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Abstract-In this paper, an efficient multiscale scheme for 
level set evolution is proposed. First, we are addressing the 
problem of passing the solution from the coarser scale to the 
finer one. Inspired by the idea of the entropy condition and its 
extention, an efficient passing solution method is presented, 
where neither extrapolation nor complex computation is 
needed. Thus it could induce fast convergence rate. 
Furthermore, an improved Hermes algorithm, called fast 
Hermes, is developed to fast implement the level set evolution 
on each scale by further loosening the constraint in the 
intermediate levels. Our approach is evaluated and compared 
to the existing algorithm. The experimental results are very 
promising. 
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I.  INTRODUCTION 

Level set method for front propagation was first introduced 
by Osher and Sethian[lj. It offers a highly robust 
mathematical and numerical implementation on curve / 
surface evolution. Its major virtue is that it naturally 
constructs the fundamental weak solution to interface 
propagation posed by Sethian. The essential idea of the level 
set method is to view the moving front as the zero level set 
of a higher dimensional function. Thus, topological changes 
of the moving front can be handled naturally by exploiting 
the zero level set. 

Efficient schemes for numerical implementation of the 
level set evolution have been extensively exploited. The 
widely used two are Narrow Band method and Fast 
Marching method. Fast Marching algorithm is a very fast 
numerical scheme for level set evolution, but it could only 
handle the monotonically advancing front problem that 
requires the speed function is always positive or negative. 
Narrow Band method could deal with all types of speed 
function problem, whereas its computational cost is very 
expensive. Hermes algorithm is proposed by Nikos in [2], 
which combines the Narrow Band and Fast Marching 
method by employing a selective propagation over a 
relatively small window. The advantages of this approach lie 
in that its computational cost is comparable to Fast 
Marching approach and that it can deal with all types of 
curve propagation as the Narrow Band method. 

Sophisticated methodology is to implement the above 
algorithm on a multiresolution space. Using a coarse to fine 
pyramid, the final solution on the coarser scale is used to 
determine the initial front condition on the finer scale. This 

approach is applied in [3] where an extrapolation of the 
solution from the level with low resolution to the level with 
finer solution configurations takes place. 

In this paper, we propose a new multiscale scheme for 
the level set evolution. ]First, borrowed from the entropy 
condition and extend it, an efficient approach to pass the 
solution from the coarser scale to the finer one is presented, 
where neither extrapolation nor complex computation is 
needed that could induce fast convergence rate. Second, An 
improved Hermes algorithm, we call it fast Hermes, is 
developed to fast implement the level set evolution 
numerically on each scale. 

In section 11, level set method is briefly outlined; in 
section 111, multiscale scheme for the level set evolution is 
described in detail, where a new passing solution method 
and fast Hermes algorithm is developed; in section IV, 
experimental results by our approach is presented and 
compared to the existing algorithm; finally in section V, 
conclusions are reported. 

11. LEVEL SET METHOD 

The essential idea of the: level set method is to embed the 
moving front as zero level set of a higher dimensional 
function. Let C ( P )  : [0,1] + R2 be a closed parameterized 
curve in Euclidean plane R 2 .  Let 4 :  R’ + R be the signed 
distance function to curve C , C is thus the zero level set of 
4 and q5 is an implicit representation of C .  Let CO be the 
initial curve, q50 be the signed distance function to Co. As 
previously reported [ 1 j , evolving C according to: 

[C(P>O) = CO (PI 
is equivalent to evolve qj by: 

(2) 
4, + F . lV4I = 0 

@(.,O) = 40() and h ( C 0 )  = 0 given 

where F is the speed function and 8 is the normal vector 
- v4 givenby N=-. 

P4 
111. MULTISCALE LEVEL SET EVOLUTION SCHEME 

Let Io ,  I , ,  ..., I,, be a set of multiscale image set, I, the 
coarsest scale image and I o  the original image. Multiscale 
scheme for exploiting the solution of (2) is obtained by 
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coarse to fine performing the following level set evolution parent” point ( k , l ) ( j + ’ )  is drawn in ‘ + ’. Its corresponding 

4(.,0) given intial front condition by passing solution neighbors” of all the “flamed children” are the potential 
front on scale j drawn in ‘ 0 ’. 

Once the potential front on the j th scale is determined, A.  Passing the solutionpom coarser scale to finer scale 

Nikos et al [3] proposed a multiscale level set evolution 
scheme where extrapolation is used to pass the solution from 
the coarser scale to the finer one. In this section, a new 
efficient passing solution method is presented, where neither 
extrapolation nor complex computation is needed. 

The level set method constructs the entropy satisfactory 
weak solution. The entropy condition may be stated as 
follows: once a particle is burned, it stays burnt [4]. The 
entropy condition allows us to determine the boundary of 
the propagating front. It could be considered as a flame 
separating a burnt region from an unbumt region. 

Borrowed from this idea, the current front can always be 
viewed as the propagating points (“flaming”) that separate 
the burnt region (“flamed”) from the unburnt region 
(“unflamed”). The image pixels are classified into three 
distinct categories: 
“flaming pixels”: the pixels that belong to the current front; 
“flamed pixels”: the pixels that belong to the previous front 
but not the current one; 
“unflamed pixels”: the pixels that have never been reached 
by the front; 

Assume that if a “parent” on the coarser scale is the 
“flamed” point then its four children on the finer scale are 
also the “flamed” points. So the “flamed region” on the finer 
scale j is the children of all “flamed parent” on the j + 1 th 
scale. The potential front on the j th scale should be the 
boundary separating the “flamed region” from “unflamed 
region”, that is, also to be all the “unflamed neighbors” of 
the “flamed children” (Fig 1). The obtained new front on the 
finer scale is almost the same topological shape as that of 
the coarser scale. 

w 

j + 1 th scale 

j th scale 

Fig 1 passing the solution from the coarser scale to the finer one 

As shown in fig 1, the current front on the j + 1 th scale 
image is the “flaming” points drawn in ‘ ‘. The “flamed 

Fast Marching method can be applied to fast initialize the 
signed distance function around this fiont within a narrow 
band with speed F = 1 outward and inward respectively. 
Then the obtained potential front and the signed distance 
function are used as the initial front condition on the j th 
scale and a new propagation could be performed within this 
narrow band, as the solution must be within it. 

B. Fast Hermes algorithm 

Hermes algorithm is proposed by Nikos to fast implement 
the level set numerical solution [2]. The idea of this 
approach combines the Narrow Band and Fast Marching 
method by employing a selective propagation over a 
relatively small window. 

rewritten as: 
A given level set partial differential equation could be 

4‘+’(X,Y)  = 4 ‘ ( X , Y ) + Y ( X , Y , 4 ‘ ) ~  ( 5 )  
where y(x,y,b‘) is the propagation velocity. The Hermes 
algorithm at each step selects the pixel with the highest 
absolute propagation velocity and performs a local evolution 
to the level set function within a circular window centered 
on this pixel. Meanwhile, the First in, First out (FIFO) rule 
is used if there are several pixels with equal propagation 
velocity. This operation either needs to search in the heap to 
find the elements that have the same highest absolute 
velocity at each step or needs to embed the queues in the 
heap through the pointer that will increase the complex of 
the algorithm. However, this FIFO rule is not necessary. Due 
to the locality, the Hermes algorithm itself obtains the final 
solution much more rapidly by loosely respecting the 
constraints in the intermediate levels. In other words, it 
prefers to propagate some individual area much faster rather 
than evolve all the intermediate levels consistently. We can 
further loosen the constraint regardless of the FIFO rule, 
which yields the fast hermes algorithm. The computational 
cost could be greatly reduced. Build a max-heap for front 
sites with respect to their absolute propagation velocity such 
that the top element has the highest absolute velocity. Using 
the max-heap algorithm, fast hermes approach at each step 
selects the pixel on the top of the heap and performs the 
local updating around this pixel. The improved fast Hermes 
algorithm could obtain the final solution much more rapidly 
than the original Hermes algorithm while it could get the 
same final solution as that of the Hermes algorithm. 
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C. Multiscale level set evolution algorithm 

On each scale, the fast Hermes algorithm is applied to 
evolve the front and the solution passed from the coarser 
scale to the finer one is obtained by our approach proposed 
in section 111-A. 

Iv .  EXPERIMENTS 

Simulations have been conducted to evaluate the three 
algorithms discussed above. Experimental results on DSA 
vessels segmentation are provided. The front motion is 
given by the geodesic active contours equation: 

dC 
- = g , ( c ,  +c,K)-(Vg, .Z).Z (6) 
at 

where I? is the unit inward normal vector and is given by 

i?=- . K is the curvature of the front and could be v4 
P4 

represented by K=div(-) v4 . g, is a monotonically 
IV4l  

decreasing fimction such that g,(r)-O as r-co and 
g,(O) = 1 . A common choice is given by 

g ,  = e  
The corresponding level set equation to equation (6) is: 

In the following experiments, we choose 
a =0.2 , c, =-1 .O ,  c2 =0.1 . The level set equation (7) is 
implemented by Multiscale level set evolution algorithm, 
fast Hemes algorithm and Hemes algorithm respectively. 

Fig 2 is the segmentation results by our multiscale 
scheme discribed in section 111-C. Fig 2(a)-fig 2(d) are the 
front propagation on scale 1. Its final solution (fig 2(d)) is 
used to determine the initial front condition on scale 0. Fig 2 
(e) shows the obtained potential front site on the finer scale 
by the passing solution method proposed in section 111-A. In 
fig2 (e), the passed fiont is very close to the desired 
boundary thus can induce fast convergence on the finer scale. 
Fig 2 (0 is the final segmentation map only by 600 iterations, 
which is obtained by using the passed solution as its initial 
front condition and evolving by fast Heremes algorithm. Fig 
3 is the segmentation results by Gst Herems algorithm 
discussed in section 111-B and fig 4 j  by Hermes algorithm 

Comparison of fig-fig4 shows that the segmentation 
results are almost the same. However, as far the 
computational cost is concerned, the running time for a 
128x 128 DSA vessel test image using Matlab language is 
18 minutes for the proposed multiscale scheme, 34 minutes 
for fast Hermes algorithm and 124 minutes for Hermes 
algorithm. Moreover, the computational time for passing the 
solution from the coarser scale to the finer scale is less than 
0.1 second. Experiments show that fast Hermes algorithm is 
much faster than Hermes algorithm and the proposed 

, a > 0 ,  where G, is Gussian function. -a1 VG,*/l 

4, + g, (c, + c,K) . p41- (Vi?, v 4  = 0 (7) 

PI .  

multiscale scheme for the level set evolution is much faster 
than the monoscale fast Heremes algorithm. 

Further application on medical image segmentation by 
our multiscale scheme i:; provided. Fig 5 is a pathlogical 
brain MR image where tumor regions are to be extracted. 
Fig 6 is a pulmonary vessel selected from CT image, which 
is preprocessed by contrast enhancement. The vessel region 
is to be extracted there. 

The first three columns are the front propagation on 
scale 1. The fourth columns show the obtained potential 
front site on the finer scale. The fifth columns show the final 
front site on scale 0. Seeing from the fourth column that the 
potential front are very close to the desired boundary thus 
the convergence on scale 0 is achieved very fast. Seeing 
from fig5 (e) that those tumors are extracted precisely. It 
could be seen from fig6 (e) that the front stops at the desired 
vessel boundary encouragingly, even some small and thin 
vessel branches, which exhibit much variability, could be 
located precisely. The segmentation results are very 
promising which show that our multiscale scheme for the 
level set evolution is fast and efficient. 

V. CONCLUSION 

In this paper, an efficient multiscale scheme for level set 
evolution was proposed. First, borrowed from the idea of the 
entropy condition and extended it, a new method passing the 
solution from the coarser scale image to the finer one was 
presented, where neither extrapolation nor complex 
computation is needed. That leads to fast convergence. 
Second, an improved fast Hermes algorithm was proposed 
to implement the level set evolution on each scale, which 
obtained the final solution much more rapidly by hrther 
loosening the constraint regardless of FIFO rule. 
Experiments on DSA vessel image segmentation show that 
the improved fast Hermes algorithm is much faster than the 
Hermes algorithm and our multiscale scheme for the level 
set evolution is much faster than the monoscale fast 
Heremes algorithm. Very promising experimental results on 
medical image segmentation was obtained by our approach. 
In the experiments, the initial front condition on the finer 
scale obtained by our passing solution method was very 
close to the final solution, which show that the proposed 
approach could speed up the convergence rate. In addition, 
the final segmentation results presented were very promising 
which show that our midtiscale scheme for the level set 
evolution is very efficient and reliable. 
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initial state 6 0  iterations 1900;terations 2400 iterations 
t i m e 4  time=l time=6 t i m e 4  

Fig2(e) passed front fig2(f) 600 iterations 

fig3(a) initial state. fig3(b) 5200iterations fig3(c ) 6100 iterations 
t i m e 4  time=29 time=?4 

fig4(a) initial state fig4(b) 5200iterations fig4(c) 6100 iterations 
t i m e 4  time=97 time=124 

Fig 2-fig4 DSA segmentation by multiscale scheme, fast Hemes algorithm, Hemes algorithm respectively 

Passed uotential front 
Segmentation map 

on scale 0 

Segmentation map on scalele 1 

fig 6 
fig 5- fig 6 medical images segmentation by multiscale level set evolution scheme 
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