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Abstract. Nuclear medicine can detect and localize tumor in the prostate not 
reliably seen in MR. We are investigating methods to combine the advantages of 
SPECT with interventional MRI (iMRI) guided radiofrequency thermal ablation 
of the prostate. Our approach is to first register the low-resolution functional 
images with a high resolution MR volume. Then, by combining the high-
resolution MR image with live-time iMRI acquisitions, we can, in turn, include 
the functional data and high-resolution anatomic information into the iMRI 
system for improved tumor targeting. In this study, we investigated registration 
methods for combining noisy, thick iMRI image slices with high-resolution MR 
volumes. We compared three similarity measures, i.e., normalized mutual 
information, mutual information, and correlation coefficient; and three 
interpolation methods, i.e., re-normalized sinc, tri-linear, and nearest neighbor. 
Registration experiments showed that transverse slice images covering the 
prostate work best with a registration error of ≈ 0.5 mm as compared to our 
volume-to-volume registration that was previously shown to be quite accurate for 
these image pairs.  

1 Introduction  

Nuclear medicine can detect and localize tumor in the prostate not reliably seen in 
MR.1 We are investigating methods to combine the advantages of SPECT with 
interventional MRI (iMRI) guided radiofrequency (RF) thermal ablation for the 
treatment of the prostate cancer. Our idea is to first register the low-resolution 
functional images with a high resolution MRI.2 Then by registering the high-
resolution MR volume with live-time iMRI acquisitions, we can, in turn, map the 
functional data and high-resolution anatomic information to iMRI images to aid tumor 
targeting. We previously reported a method for the registration of noisy, thick iMRI 
image slices with high-resolution MR volumes with simulated 3 and actual iMRI 
images.4 In this report, we compared three interpolation methods and three similarity 
measures for this application. Hundreds of registration experiments were performed 
with 12 pairs of MR volume images acquired from four healthy volunteers. 

J.C. Gee et al. (Eds.): WBIR 2003, LNCS 2717, pp. 321-329, 2003 
© Springer-Verlag Berlin Heidelberg 2003 



 

 

322 

2 Registration Algorithms  

2.1 Three Interpolation Methods  

We investigated three interpolation methods, i.e., re-normalized sinc interpolation,5 
tri-linear, and nearest neighbor.  

Let the original data set be Iorg , the re-formatting data set Inew . The conventional 
sinc interpolation with a cosine Hamming window is described as below.5,6  
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and X, Y, Z, represent the coordinates of (Iorg); x, y, z the coordinates of (Inew ); A is a 
symbol representing X, Y, or Z, and a represents x, y, or z; and R is the kernel size. 
The Hamming function eliminates problems with oscillatory effects at discontinuities 
and guarantees that the convolution coefficients fall of to zero at the edge of the sinc 
kernel (i.e., at |a|=R+1, where R=5 in this study).5  

In our implementation, we used the re-normalized sinc interpolation method 
because it could make significant improvement in performance of the conventional 
sinc interpolation.5 We replaced H in the above equation with  
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2.2 Three Similarity Measurements  

We used three similarity measures, normalized mutual information (NMI), mutual 
information (MI), and correlation coefficient (CC), in our registration. One image R is 
the reference, and the other F is floating. Their mutual information MI is given 
below.7,8 
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intensity histograms. We used the NMI version proposed by Maes.8  
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The correlation coefficient CC  is given below.9 
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Here FR, denote the average intensities of the reference and floating images and the 

summation includes all voxels within the overlap of both images. 
 

 

Fig. 1 Similarity surfaces are plotted as a function of translations at the 1/4 resolution in the 
multi-resolution registration process. Two high-resolution MRI volumes were registered, and 
they are down sampled by 1/4 along each linear dimension, giving a distance between voxel 
centers of ≈ 5.5 mm. From the optimal parameters, we computed the similarity values of the 
simulated iMRI and MRI images as a function of translations along the coronal (anterior-
posterior) and sagittal (left-right) axis. From top to bottom, normalized mutual information 
(NMI), mutual information (MI), and correlation coefficient (CC) surfaces are plotted.  From 
left to right, sinc, tri-linear, and nearest neighbor interpolations are used to obtain the floating 
images, respectively. The noisey NMI/MI surfaces show a false global maximum and many 
local maxima. CC surfaces are much smoother indicating its suitability for low resolution. 
Nearest neighbor has a flat peak with a width of one voxel in similarity surfaces. Images are 
from volunteer S2.  

2.3 Comparison of Similarity Surfaces  

We plot the similarity surfaces for the three similarity measures, NMI, MI, and CC, at 
different resolutions; and we determine their suitability for SV registration. At 1/4 
resolution, we resampled images so as to give 1/4 number of the voxels along each 
linear dimension. At full resolution, we used the full number of voxels. We plot the 
similarity measures as a function of translations. After two typical high-resolution 
MR volumes were registered,10 values were plotted with the origin as the optimal 



 

 

324 

transformation. We calculated similarity values while moving the simulated iMRI 
image relative to the high-resolution MR image along coronal (anterior-posterior) and 
sagittal (left-right) axis. When obtaining floating images, we used the three different 
interpolation methods. 

At 1/4 resolution (Fig. 1), CC surfaces are much smoother than NMI and MI, 
which are noisy and contain a false global maximum that could lead to a false answer 
and many local maxima.11 From these figures, we infer that CC is better at low 
resolution. Comparing CC surfaces of different interpolations, sinc and tri-linear have 
similar surfaces, and tri-linear is better than nearest neighbor. For this application, we 
chose tri-linear interpolation instead of sinc because it is much faster and because it 
has comparable performance. Finally, we used CC and tri-linear at low resolution.  

At full resolution (Fig. 2), NMI and MI surfaces are much more peaked than CC 
that infers good optimization accuracy, but once again there is high frequency noise in 
the NMI and MI curves, far from the optimum, that gives rise to local maxima that 
must be avoided. Comparing three interpolation methods, sinc gave the sharpest peak 
at the optimum; nearest neighbor interpolation gave a flat peak with a width of one 
voxel; and tri-linear gave a result between the other two. As stated above, tri-linear is 
much faster that sinc with similar performance. NMI and MI have no significant 
difference but NMI is a little bit robust in our implementation. We chose NMI and tri-
linear at the full resolution.        

 

 

Fig. 2 Similarity functions are plotted as a function of translations at full resolution. Many 
details are given in the legend of Fig. 1. NMI and MI surfaces are much peaked than CC, 
especially with sinc and tri-linear interpolation. The voxel is isotropic with 1.4 mm on a side. 
Image data are the same used in Fig. 1. 
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2.4 Combination of Normalized Mutual Information and Correlation Coefficient  

As a result of the above analyses, we created a registration algorithm for prostate MR 
images. We define the iMRI image slice to be the reference image; the matching slice 
from the high-resolution MRI volume is the floating image. We use a multi-resolution 
approach and perform registration from low to high resolution. We use CC at the two 
lower resolutions because it gives fewer local maxima and because it can be 
calculated faster than NMI. We use NMI at full resolution because of its peaked 
surface. To avoid local maxima, we include a restarting feature where registration is 
restarted with randomly perturbed parameters obtained from a uniform distribution 
about the initial transformation values at the current resolution being used. The 
algorithm restarts until the absolute CC is above a threshold of 0.5 as experimentally 
determined or the maximum number of restarts is reached.  

For registration, we use a rigid body transformation (three translations and three 
rotations). For optimization, we use the downhill simplex method of Nelder and 
Mead.12 Optimization of similarity ends either when the maximum number of 
calculations is reached (typically 500) or when the fractional change in the similarity 
function is smaller than a tolerance (typically 0.001). We use IDL (Interactive Data 
Language, Research System Inc., Boulder, CO.) as the programming language. We 
use an initial guess assuming an identity transformation, i.e., all initial translation and 
rotation parameters are zero, because the patient is normally oriented approximately 
the same way from one scan to the next. We set the maximum numbers of restarts at 
10, 5, and 3, from low to high resolution, respectively. 

2.5 Registration Evaluation 

We used a variety of evaluation methods. We used RegViz, a program created in IDL 
in our laboratory with multiple visualization and analysis methods. First, we manually 
segmented prostate boundaries in image slices and copied them to corresponding 
slices. This enabled visual determination of the overlap of prostate boundaries over 
the entire volume. Second, color overlay displays were used to evaluate overlap of 
structures. To visualize potential differences, it was quite useful to interactively 
change the contribution of each image using the transparency scale. Third, we used a 
sector display, which divided the reference and registered images into rectangular 
sectors and created an output image by alternating sectors from the two input images. 
Even subtle shifts of edges would be clearly seen.  

Our quantitative evaluation method for slice to volume registration was to compare 
SV and VV registration.10 For volume pairs acquired over a short time span from a 
supine subject with legs flat on the table, prostates were well aligned and prostate 
centroid displacements were typically < 1 mm. The registration accuracy as 
determined from displacements of pelvic bony landmarks was 1.6 ± 0.2 mm, a value 
comparable to error associated with locating the landmarks.10 To compare SV and VV 
registration, we defined a rectangular volume of interest (VOI) just covering the 
prostate and calculated voxel displacements between the two registrations. We 
defined the SV registration as being successful when the 3D displacement was less 
than 2.0 mm.  
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3 Experimental Methods  

3.1 Imaging Experiments  

We acquired high resolution MRI volumes from a 1.5 T Siemens MRI system 
(Magnetom Symphony, Siemens Medical Systems, Erlangen, Germany). An 8-
element phased array body coil was used to ensure coverage of the prostate with a 
uniform sensitivity. We used a 3D rapid gradient echo sequence (PSIF) designed to 
acquire the spin-echo component of the steady state response, rather then the free 
induction decay. The sequence with 9.4/5.0/60 (TR/TE/flip) yielded 160 x 256 x 128 
voxels over a 219 x 350 x 192-mm rectangular FOV and 1.4 x 1.4 x 1.5-mm voxels 
oriented to give the highest resolution for transverse slices. There was over sampling 
at 31% in the slice direction to reduce aliasing artifacts. The acquisition time was 4.3 
min. The sequence gave excellent image contrast for the prostate and its surroundings. 

We acquired high resolution MRI volumes from four volunteers S1-S4. For each 
volunteer, three image volumes were obtained with an imaging session. Each volume 
was acquired with compatible conditions. Volunteers laid supine with legs flat similar 
to the position in routine MR scanning. Between volume acquisitions, volunteers got 
off the MRI table, stretched, and walked around to ensure that they would assume a 
different position when they laid back on the table. The coil array was centered on the 
prostate. All images of a volunteer were acquired with the same MRI acquisition 
parameters. In total, there are 12 pairs of high-resolution MRI volumes for 
registration. 

We used the high-resolution MRI volumes to simulate iMRI images by creating 
thick slices and adding noise. MR noise is described by the Rician distribution,13 but 
at reasonably high signal values, the noise is accurately approximated with Gaussian 
white noise.14 We added Gaussian noise to the simulated iMRI slice images. 
Clinically, we typically use an iMRI slice thickness of 4.0 - 6.0 mm. We averaged 3 
1.4 mm thick slices to create a 4.2 mm thick slice. 

Additionally, we acquired real iMRI images from volunteers S1-S3 using a clinical 
0.2 T C-arm open MR scanner (Siemens Open Symphony, Erlangen, Germany). We 
used a two-dimensional (2D) PSIF sequence with 15.2/7.4/45 (TR/TE/FA) for image 
slice acquisitions. The iMRI slices were 128x128 with in-plane pixel size of 
2.8x2.8 mm and with effective slice thickness of 5 mm.  

3.2 Registration Experiments 

We used 12 pairs of high-resolution MR volumes to perform registration experiments. 
For each volume pair, we extracted data from one volume to simulate thick iMRI 
image slices; and then we registered the simulated image slices to the other volume. 
We desire an iMRI slice image acquisition method that gives robust, accurate 
registrations and is relatively insensitive to acquisition parameters. Hence, we 
performed experiments to determine the dependence on slice orientation (transverse, 
sagittal and coronal), on slice position relative to the prostate (above, centered, and 
below) and on image noise from fast imaging techniques. 

We also performed SV registration experiments using actual iMRI images. We 
registered actual iMRI image slices with high-resolution (1.5 T system) MR volumes 



       

 

327 

and visually evaluated results. For each volunteer S1-S3, there were three high-
resolution MR volumes and 30 iMRI image slices giving 90 SV registration 
experiments, and a total of 270 experiments.  

 

 

Fig. 3 Prostate images of high resolution MRI (a) and interventional MRI (b). The rectangular 
region at the center of image (c) is the overlay display of both images. The prostate matches 
well. Images are from S3.  

 

4 Results  

4.1 Simulated Images  

Using simulated iMRI images, we determined SV registration results for slices near 
the prostate in the three standard orthogonal orientations. Comparing to VV, average 
registration errors were 0.4 mm, 0.5 mm, and 2.6 mm for transverse, coronal and 
sagittal slices covering the prostate, respectively. Transverse slices worked best 
because they contained many relatively rigid anatomical structures. Coronal slices 
worked next best. Sagittal slices gave the largest error because they contained a large 
portion of the deformable bladder and rectum.  
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The registration is insensitive to noise. Typical iMRI SNR under clinical conditions 
is about 25. Even when noise much exceeded this normal situation, registration results 
were quite good. A 100% success rate was achieved with an acceptance criterion of 
< 2.0 mm even when SNR was as bad as 10.  

4.2 Actual iMRI Images  

Registration of actual iMRI image slices with a high-resolution MR volume was 
successful. The contours overlap and overlay images show that the prostate matches 
very well. Other visual inspections also demonstrate excellent registration. Note that a 
single iMRI image was used to produce this registration result.  

4.3 Algorithm Implementation 

Computation time and registration accuracy are two main factors to consider when 
choosing interpolation methods. Using tri-linear interpolation, the time for an SV 
registration was typically about 5 sec on a Pentium IV, 1.8 GHz CPU, with 1Gbyte of 
memory. When the re-normalized sinc interpolation method was used, the time was ≈ 
10 min, a duration not acceptable for our application. The algorithm was written in 
IDL and could probably be made faster in a lower level language such as C. We did 
not use nearest neighbor because of insufficient accuracy as deduced from its flat 
peak of the similarity surfaces in Figure 2. A call to the Simplex optimization 
typically resulted in 50 to 150 similarity evaluations before the tolerance value 
(0.001) was reached.   

4 Discussion and Conclusion  

The comparison of similarity surfaces enabled us to design a robust, fast, and accurate 
registration algorithm for the potential applications of iMRI-guided thermal ablation 
of the prostate cancer. A single iMRI image slice achieved nearly the same accuracy 
as obtained from volume-to-volume registration. Since live-time iMRI images are 
used for guidance and registered images are used for adjunctive information, the 
registration accuracy is very probably adequate. As compared to a typical SPECT 
and/or iMRI slice thickness of ≥  3.0 mm, SV registration is quite accurate.  

If one were to use functional or high-resolution MR images directly for tumor 
targeting within the relatively small prostate, the requirements for registration 
accuracy would be great. However, fused image data will not be used blindly. Rather, 
these visualizations will be used as a guide. Physicians will always use the live-time 
iMRI images for needle guidance. With proper visualization tools, physicans should 
be able to mentally account for any small registration errors. Moreover, the functional 
images might enable one to find cancer features in the iMRI images. 

Finally, we conclude that it is quite feasible to include previously acquired high-
resolution MRI and nuclear images into iMRI-guided treatment procedures. We are 
beginning to explore this application in animal experiments. 
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