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Abstract—We present a robust, automated, model-based 
segmentation method for kidney MR Images. We used dynamic 
programming and a minimal path approach to detect the optimal 
path within a weighted graph between two end points. We used 
an energy function to combine distance and gradient information 
to guide the marching curve and thus evaluate the best path and 
span a broken edge. We developed an algorithm to automate the 
placement of initial end points. Dynamic programming was used 
to automatically optimize and update end points in the procedure 
for searching curves. A deformable 3D model was generated 
using principle component analysis (PCA) and it was used as the 
prior knowledge for the selection of initial end points and for the 
evaluation of the best path.  We used our minimal path method 
with surface models to segment mouse kidneys slice-by-slice. The 
method has been tested for kidney MR images of 44 mice. To 
quantitatively assess the automatic segmentation method, we 
compared the automatic segmentation results with manual 
segmentation. The average and standard deviation of the overlap 
ratios is 0.93  0.05. The distance error between the automatic 
and manual segmentation is  0.85 � 0.41 pixel. The 3D automatic 
minimal path segmentation method is fast, accurate, and robust. 
It provides a useful tool for quantification and characterization 
of kidney MR images.  
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I.  INTRODUCTION 
Autosomal-dominant polycystic kidney disease (ADPKD) 

is a common genetic disorder characterized by the formation of 
fluid-filled renal cysts that can eventually lead to renal failure. 
Serial MRI studies can provide high-resolution anatomic 
structure of the kidneys and thus could be a useful tool for the 
assessment of various therapies [1]. In this study, we develop a 
new 3D segmentation method to segment and measure the 
kidney volumes of transgenic mice with polycystic kidney 
disease (PKD) from MR images. 

The organization of the paper is as follows.  In section II, 
we discuss the details of proposed method. In section III, the 
method is applied to segment and measure the kidney MR 
images of transgenic mice.. The summary and conclusion are 
presented in section IV. 

II. SEGMENTATION METHODS  

A. Energy Functions 
In a Riemannian space, the traditional energy function of 

snake [2] is transformed into a new function [3] as follows: 
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where the Euclidean length of the contour C is given by 
���
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���� � � ��� . Therefore, the problem of 
image segmentation is transformed into a search for the global 
minimal path. This method has low computational complexity 
in high-order gradients and does not involve minimizing the 
corresponding Euler–Lagrange equation. 

We incorporated distance and gradient information into an 
energy function to guide the marching curve toward the best 
path and span the broken edge. Our energy function is as 
follows:  
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Where �, � and � are real positive weighting constants 
which balance the forces, � denotes the current curve body, �����  can be calculated using the Bayes’ Rule and the 
maximum posteriori probability (MAP) function, 
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where � denotes the weighted graph that contains the 
estimated curve of the object, G(x, y) denotes the weighted 
graph of the image. The first term represents the degree of the 
current curve matching the estimated distance map. The second 
term represents the degree of the estimated distance map 
matching the former distance map. The third term represents 
the probability of the estimated shape which is described later.          
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where the first term denotes the degree of the curve C in the 
distance map, which is the Euclidean length of the curve C; the 
second item denotes the gradient of the original image, which 
is used to regulate the searching when the distance map is not 
enough for guiding the curve in case of noises and lack of a 
real edge. � and (1-�) denote the weights of the distance and 
gradient information. 

In the discrete case, �#'( � AB#;3 C DB# ! B#E3A , is a 
smooth term.                                        

B. Kidney Model 
In our method, a deformable model for selecting initial 

points and evaluating the best path is created. For training 
images, we computed and obtained a kidney shape model using 
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the principal component analysis (PCA) [3,4]. Using singular 
value decomposition (SVD), the matrix is decomposed as B � F :G9 . Matrix U is the model with orthogonal column 
vectors that consist of the modes of shape variation and 
diagonal matrix H� is composed of corresponding singular 
values. Given coefficient � and shape matrix  F< , we can 
estimate a novel shape �,  

I � F<� ! J������������������������������������������������������������������������������������(5) 

Which is represented by k principal components in a k-
dimensional vector of shape parameters � (where K L M).  We 
assumed the shape parameter � was satisfied a Gaussian 
distribution as represented below:  
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C. Improved Dynamic Programming 
In our method, the images are transformed into a graph-

based map. The graph-based search methods consider an image 
as a graph with a rectangular grid in which each pixel is a node. 
Boundary definition via dynamic programming can be 
formulated as a graph searching problem where the goal is to 
find the optimal path between a set of start nodes and a set of 
end nodes [5,6].  

The optimal path is defined as the minimum cumulative 
cost path, where the cumulative cost of a path is the sum of the 
local costs of the pixels on the path. To overcome the difficulty 
of searching the initial direction using dynamic programming, 
we developed an algorithm to incorporate eight directions into 
one universal searching map. As in Figure 1,  we define a fixed 
direction window, any direction searching window map must 
be transformed into this fixed direction searching window. We 
defined the center point of the bottom line in this window as 
the start stage of dynamic programming, and defined each 
point of the last line as the end stage. Then, we can obtain 
several searched results and then evaluate and get the best one 
using previous energy function. 
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Figure 1.  (a) Eight directions for searching windows. (b) 
Universal searching window. The center point of the bottom line 
represents the start stage, and the top line represents the end stage.  
The a, b, c, d, e represent 5 paths. A best minimal path will be selected 
by the algorithm among these paths. For example, Path c is the best 
one. 

 

III. EXPERIMENTS AND RESULTS 
We acquired kidney MR images from 44 mice using a 

Siemens Sonata 1.5 T scanner. We randomly selected 20 
dataset for model training, and used the other 24 datasets to test 
the segmentation method.  

For the training images, we first registered and manually 
segmented the 20 kidney dataset on each image. We then 
performed distance transformation under a fixed window size. 
After computing the mean of the training distance maps, we 
got a mean surface, J � V

W :X. Then, the variable � is subtracted 
from each J#� to create the mean-offset array, JYZ , which is 
placed as a column vector in an [� \ M dimensional matrix M. 
After using the formulas (5) and (6), we obtained the mean 
shape surface and singular value and orthogonal.  

 

 
Figure 2.   Procedure for selecting and updating end points. (a) 

Initial end points. Radial rays were generated from the window center 
of the distance map. If the weighting value of a point along the ray is 
zero, it is marked as an end point. If not, select the intersection point 
between the ray and the mean contour of the model as the marked end 
point. (b) Update end points. If there is a broken edge and the end 
point is far away from the real edge, the algorithm will use the model. 
The end point will be corrected towards the real edge (Arrow) after 
iterations. (c)-(d) End Points after one and two iterations. 

 

During segmentation, we put the segmented object volumes 
into the box which sets the start slice and end slice. The object 
volume is between the two slices. The segmentation procedure 
was performed slice by slice. Each slice was segmented using 
our minimal path segmentation method with models. The slice 
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images were first preprocessed by Canny edge detection and 
then by distance transformation. Figure 2 shows the procedure 
of creating and updating serial end points for minimal path 
searching. We placed the goal object located at the center of 
our searching window. Then, we selected the window center as 
the central point to create radius rays with an interval of a fixed 
angle (22.5 degrees in our case). So, an alignment of marked 
end points was generated. 

 

 
Figure 3  Automatic segmentation results for images with different 

quality. The method works well for both “good” and “bad” images.  
Image (a) is a typical kidney MR image of a mouse. The boundaries of 
the kidney on the images (b), (c) and (d) are not continuous. The 
automatic segmentation method works well for all the images.  

 

At the beginning of searching the minimal path, we selected 
two interval points of the alignment and several subsequent 
neighbor points as the start and end stages for dynamic 
programming. After searching, several paths were generated. 
We used function (2) to evaluate and select the minimal energy 
path. Then, the middle point of this minimal path was selected 
as the next starting end point, rather than the next point of the 
original alignment. From this new starting point to its interval 
point, a new searching procedure was started again. Thus, the 
marked end points were continuously updated and optimized 
towards the direction of the real edge. We can set the number 
of iteration or can control the error rate between two iterations 
as the stopping condition. After several iterations, a satisfied 
segmented contour could be obtained, which is on or 
approaching the real edge because of the influence of 
maximum probability of the model, even if the part of real edge 
is lost. Thus, we can get a satisfied result. 

After segmented one slice, the algorithm can be 
automatically performed to segment next slice until all slices of 
the selected object are done. The segmented slices can be 
constructed into a segmented volume. 

Figure 3 shows four different images and the segmentation 
results. The method works well for both “good” and “bad” 
images and for images with discontinuous edges. The 
segmentation was assessed by the overlap ratio between 

automatic and manual segmentation and by mean distance 
errors between the two segmentations. For MR images from 24 
mice, the average and standard deviation of the overlap ratios is 
0.93 0.05. The distance error between the automatic and 
manual segmentation is 0.85� 0.41 pixel. The method is 
accurate and robust for mouse kidney MR images. 

 

IV. CONCLUSION 
We developed an automatic minimal path segmentation 

method for kidney MR images. In order to improve the 
robustness of the segmentation method, we incorporated 
distance and gradient information into the energy function to 
guide the marching curve toward the best path and span the 
broken edge.  In this new method, the prior knowledge model 
was used to assist the potential curve to select the best path. 
During the dynamic programming search procedure, the 
placement and update of the end point were automatically 
performed in our new method. The automatic segmentation 
method is fast, accurate, and robust. This method provides a 
useful tool for quantification and characterization of polycystic 
kidney disease in transgenic mice. It can be applied to human 
kidney images with many clinical applications.  
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