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Abstract. Prostate cancer affects 1 in 6 men in the USA. Systematic transrectal 
ultrasound (TRUS)-guided biopsy is the standard method for a definitive 
diagnosis of prostate cancer. However, this "blind" biopsy approach can miss at 
least 20% of prostate cancers. In this study, we are developing a PET/CT 
directed, 3D ultrasound image-guided biopsy system for improved detection of 
prostate cancer. In order to plan biopsy in three dimensions, we developed an 
automatic segmentation method based wavelet transform for 3D TRUS images 
of the prostate. The segmentation was tested in five patients with a DICE 
overlap ratio of more than 91%. In order to incorporate PET/CT images into 
ultrasound-guided biopsy, we developed a nonrigid registration algorithm for 
TRUS and PET/CT images. The registration method has been tested in a 
prostate phantom with a target registration error (TRE) of less than 0.4 mm. The 
segmentation and registration methods are two key components of the 
multimodality molecular image-guided biopsy system. 
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1   Introduction 

Systematic transrectal ultrasound (TRUS)-guided prostate biopsy is considered as the 
standard method for prostate cancer detection. The current biopsy technique has a 
significant sampling error and can miss at least 20% of cancers [1]. As a result, a 
patient may be informed of a negative biopsy result but may in fact be harboring an 
occult early-stage cancer. It is a difficult challenge for physicians to manage patients 
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with false negative biopsies who, in fact, harbor curable prostate cancer as indicated 
by biochemical measurements such as rising prostate specific antigen (PSA), as well 
as patients diagnosed with early-stage disease.  

Although ultrasound imaging is a preferred method for image-guided biopsy 
because it is performed in real time and because it is portable and cost effective, 
current ultrasound imaging technology has difficulty to differentiate carcinoma from 
benign prostate tissue. MR spectroscopic imaging (MRSI) is playing an increasing 
role in prostate cancer management [2-3]. Various PET imaging agents have been 
developed for prostate cancer detection and staging, these include 18F-FDG [4], 11C-
choline [5], 18F-fluorocholine [6], 11C-acetate [7], 11C-methionine [8], and other PET 
agents. 18F-FDG is widely used in cancer applications. However, it has low sensitivity 
in the primary staging of prostate cancer and poor detection of abdominal-pelvic 
nodes because of excretion of tracers in the ureters, bladder, and bowel. PET imaging 
with new molecular imaging tracers such as FACBC has shown promising results for 
detecting and localizing prostate cancer in humans [9]. FACBC PET images show 
focal uptake at the tumor and thus could be ideal information to direct targeted 
biopsy. By combining PET/CT with 3D ultrasound images, multimodality image-
guided targeted biopsy may be able to improve the detection of prostate cancer. 

2   Multimodality Molecular Image-Guided Biopsy System 

We focus on a PET/CT directed, 3D ultrasound-guided biopsy system (Fig. 1). The 
steps of targeted prostate biopsy are as follows.  (1) Before undergoing prostate 
biopsy, the patient undergoes a PET/CT scan with FACBC as part of the 
examinations. The anatomic CT images will be combined with PET images for 
improved localization of the prostate and suspicious tumors.  (2) During biopsy, 3D 
ultrasound images are acquired immediately before needle insertion. The 3D 
ultrasound images are registered with the PET/CT data for biopsy planning. Three-
dimensional visualization tools guide the biopsy needle to a suspicious lesion.  (3)  
At the end of each core biopsy, the needle tip position is recorded on the real-time 
ultrasound images. The location information of biopsy cores is saved and then 
restored in the re-biopsy procedure. This allows the physician to re-biopsy the same 
area for a follow-up examination. The location information of the biopsy cores can 
also be used to guide additional biopsy to different locations if the original biopsy was 
negative.  
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Fig. 1. Molecular image-directed, ultrasound-guided system for targeted biopsy. Top: The 
PET/CT and MRI/MRS were acquired from the same patient at our institution. PET/CT with 
FACBC shows a focal lesion within the prostate (white arrow). MR images also show the 
suspicious lesion in the gland. The 3D visualization of the pelvis and prostate can aid the 
insertion of the biopsy needle into a suspicious tumor target. Bottom: A mechanically assisted 
navigation device was developed to acquire 3D TRUS images from the patient. The prostate 
boundaries are segmented from each slice and are then used to generate a 3D model of the 
prostate. Real-time TRUS images are acquired and registered to the 3D model in order to guide 
the biopsy. To incorporate PET/CT into ultrasound-guided procedures, deformable registration, 
segmentation, fusion, and visualization are the key technologies. 

3   Automatic Segmentation of 3D Prostate Ultrasound Images 

Many methods for semi-automatic or automatic segmentation of the prostate in TRUS 
images have been proposed. Active shape models (ASM) was proposed to segment 
the prostate [10]. Knoll et al. proposed a deformable segmentation model that uses 
one-dimensional wavelet transform as a multi-scale contour parameterization tool to 
constrain the shape of the prostate model [11].  

Our proposed method consists of the training and application stages. Two training 
TRUS images were used for wavelet features training and ten patients are used to 
make a predefined model. The prostate boundaries have been manually defined by 
specialists. A prostate shape model is created based on the allowable models of shape 
variations and its probability. This model is employed to modify the prostate 
boundaries. The prostate textures are locally captured by training the locally placed 
Wavelet-based support vector machines (W-SVMs). With integrating local texture 
features and geometrical data, W-SVMs can robustly differentiate the prostate tissue 
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from the adjacent tissues. The trained W-SVMs are employed to tentatively label the 
respective voxels around the surface into prostate and non-prostate tissues based on 
their texture features from different Wavelet filters. Subsequently, after an affine 
transformation of the  shape model to the pre-defined prostate region that optimally 
matches with the texture features of the prostate boundary, the surface of the model is 
driven to the boundary between the tentatively labeled prostate and non-prostate 
tissues based on defined weighting functions and labeled voxels. 

TRUS image textures can provide important features for accurately defining the 
prostate, especially for the regions where prostate boundaries are not clear. 
Biorthogonal wavelets 1.3, 1.5, and 4.4 are employed to extract the texture features of 
the prostate. Designing biorthogonal wavelets allows more degrees of freedom 
comparing to orthogonal wavelets. One additional degree of freedom is the possibility 
to construct symmetric wavelet functions. A number of W-SVMs on different regions 
of the surface model are placed and trained to adaptively label the tissue based on its 
texture and location. Each W-SVM is composed of 5 wavelet filter banks, voxel 
coordinates, and a Kernel Support Vector Machine (KSVM).   

The wavelet filters are employed to extract texture features from TRUS images, 
and the KSVM is used to nonlinearly classify the Wavelet texture features for tissue 
differentiation. Each W-SVM corresponds to an individual sub-region in order to 
characterize and differentiate image textures locally and adaptively. All W-SVMs are 
trained to differentiate the texture features around its corresponding sub-regions in the 
training set. The trained W-SVMs are employed to tentatively label each voxel into 
prostate and non-prostate tissues in the application stage. To find more accurate 
segmentation, the set of W-SVMs is trained and applied in 3 planes (sagittal, coronal, 
transverse). Three sets of 2-D Wavelet filters were located at three orthogonal planes 
and were trained in each plane. Therefore, each voxel was tentatively labeled in three 
planes as prostate or non-prostate voxel. Fig. 2 shows the algorithm flowchart of the 
segmentation method. 

 

Fig. 2. The flowchart of the wavelet-based segmentation algorithm 
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A prostate probability model was used for modifying the segmentation. To build 
the prostate model, ten segmented prostates were registered using an affine 
transformation. Other registration methods can also be used to register the prostate of 
different patients [12-14]. In this study, we used the registration approach that is 
based on the principal axis transformation. This method was chosen because of its 
computational properties, speed and simplicity. The prostate volume was translated 
and rotated with respect to each other. The principal axis transformation is known 
from the classical theory of rigid bodies. A rigid body is uniquely located by 
knowledge of the position of its center of mass and its orientation (rotation) with 
respect to its center of mass. The center of mass, inertia matrix, and principal axes can 
be determined for any rigid body. For simple geometric shapes, the principal axes 
coincide with the axes of symmetry. In general, an orthogonal coordinate system is set 
up with their origin at the center of mass. When computed in the principal axis 
coordinate system, the inertia matrix is diagonal. The basic parameters that were used 
for registration of the prostate are the position of the center of mass and rotation of the 
prostate about the center of mass, and the lengths of the principle axes. These 
properties uniquely determine the location and geometry of the prostate in three-
dimensional space. After overlaying these 10 registered volumes, a probability model 
was created for each voxel based on how many prostate models are labeled as a voxel 
of the prostate at that region. 

4   Nonrigid Registration of TRUS and CT Images 

Our non-rigid registration method includes three terms: (1) surface landmark 
matching, (2) internal landmark matching, (3) volume overlap matching. Let  CT

ix and 
US
iy are surface landmarks of the prostate from the segmented CT and TRUS images, 

respectively,  CT
ku and US

lv are internal landmarks e.g. urethra and calcification within 

the prostate on the CT and TRUS  images, respectively. 
CTB and

USB  represent the 

bladder neck region on the CT and TRUS images, respectively.   

Inspired by [16-18], we design an overall similarity function to integrate the 
similarities between same type of landmarks and add smoothness constraints on the 
estimated transformation between segmented CT and TRUS images. The 
transformation between CT and TRUS images are represented by a general function, 
which can be modeled by various function basis. In our study, we choose B-splines as 
the transformation basis. The similarity function is written as: 
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α , β ,γ , and λ  are the weights for each energy term. SSE  is the similarity for 

surface landmarks, and ISE  is the similarity for internal landmarks. VME  is the 

energy term for the bladder-neck volume matching; and SE  is the smoothness 

constraint term. δ  and τ are called the temperature parameter and its weighted 

term is an entropy term comes from the deterministic annealing technique [28]. ξ  

and η  are the weight for the outlier rejection term. Matrixes ijp  and klq  are the 

fuzzy correspondence matrixes [25]. f denotes the transformation between CT and 

TRUS images, which is B-spline transformation in our method.  

The overall similarity function can be minimized by an alternating optimization 

algorithm that successively updates the correspondences matrixes ijp  and klq , and 

the transformation function f. First, with the fixed transformation f, the 
correspondence matrixes between landmarks are updated by minimizing ( )E f . The 

updated correspondence matrixes are then treated as the temporary correspondences 

between landmarks. Second, with the fixed temporary correspondence matrixes ijp  

and klq , the transformation function f is updated. The two steps are alternatively 

repeated until there are no updates of the correspondence matrixes.  

5   Results 

We developed a 3D ultrasound-guided biopsy system for the prostate. The system 
uses: (1) Passive mechanical components for guiding, tracking, and stabilizing the 
position of a commercially available, end-firing, transrectal ultrasound probe; (2) 
Software components for acquiring, storing, and reconstructing real- time, a series of 
2D TRUS images into a 3D image; and (3) Software that displays a model of the 3D 
scene to guide a biopsy needle in three dimensions. The system allows real-time 
tracking and recording of the 3D position and orientation of the biopsy needle as a 
physician manipulates the ultrasound transducer. 

The segmentation method was evaluated by five patient data sets of 3-D TRUS. 
Fig. 3 shows sample segmentation and its comparison with the corresponding gold 
standard. Quantitative performance assessment of the method was done by comparing 
the results with the corresponding gold standard data from manual segmentation. The 
Dice similarity and Sensitivity were used as performance assessment metrics in 
prostate classification algorithm. The numerical results of these evaluation criteria are 
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registered the post-biopsy images of the same patient. For five sets of patient data, the 
target registration error (TRE) was 0.88±0.16 mm and the maximum TRE is 
1.08±0.21 mm.  

6   Discussion and Conclusion 

We developed a PET/CT directed, 3D ultrasound-guided biopsy system for the 
prostate. In order to include other imaging modality such as PET/CT into 3D 
ultrasound-guided biopsy, we developed a 3D non-rigid registration method that 
combines point-based registration and volume overlap matching methods. The 
registration method was evaluated for TRUS and MR images. The registration method 
was also used to register 3D TRUS images acquired at different time points and thus 
can be used for potential use in TRUS-guided prostate re-biopsy. Our next step is to 
apply this registration method to CT and TRUS images and then incorporate PET/CT 
images into ultrasound image-guided targeted biopsy of the prostate in human 
patients.  

In order to build a 3D model of the prostate, a set of Wavelet-based support vector 
machines and a shape model are developed and evaluated for automatic segmentation 
of the prostate TRUS images. Wavelet transform was employed for prostate texture 
extraction. A probability prostate model was incorporated into the approach to 
improve the robustness of the segmentation. With the model, even if the prostate has 
diverse appearance in different parts and weak boundary near bladder or rectum, the 
method is able to produce a relatively accurate segmentation in 3-D TRUS images.  

Acknowledgement. This research is supported in part by NIH grant R01CA156775 
(PI: Fei), Coulter Translational Research Grant (PI: Fei), Georgia Cancer Coalition 
Distinguished Clinicians and Scientists Award (PI: Fei), Emory Molecular and 
Translational Imaging Center (NIH P50CA128301), SPORE in Head and Neck 
Cancer (NIH P50CA128613), and Atlanta Clinical and Translational Science Institute 
(ACTSI) that is supported by the PHS Grant UL1 RR025008 from the Clinical and 
Translational Science Award program. 

References 

1. Roehl, K.A., Antenor, J.A., Catalona, W.J.: Serial biopsy results in prostate cancer 
screening study. J. Urol. 167(6), 2435–2439 (2002) 

2. Jambor, I., Borra, R., Kemppainen, J., Lepomäki, V., Parkkola, R., Dean, K., Alanen, K., 
Arponen, E., Nurmi, M., Aronen, H.J., Minn, H.: Functional imaging of localized prostate 
cancer aggressiveness using 11C-acetate PET/CT and 1H-MR spectroscopy. J. Nucl. 
Med. 51(11), 1676–1683 (2010) 

3. Carlani, M., Mancino, S., Bonanno, E., Finazzi Agrò, E., Simonetti, G.: Combined 
morphological, [1H]-MR spectroscopic and contrast-enhanced imaging of human prostate 
cancer with a 3-Tesla scanner: preliminary experience. Radiol Med. 113(5), 670–688 
(2008) 
 



108 B. Fei et al. 

4. Schöder, H., Herrmann, K., Gönen, M., Hricak, H., Eberhard, S., Scardino, P., Scher, H.I., 
Larson, S.M.: 2-[18F]fluoro-2-deoxyglucose positron emission tomography for the 
detection of disease in patients with prostate-specific antigen relapse after radical 
prostatectomy. Clin. Cancer Res. 11(13), 4761–4769 (2005) 

5. Schilling, D., Schlemmer, H.P., Wagner, P.H., Böttcher, P., Merseburger, A.S., Aschoff, 
P., Bares, R., Pfannenberg, C., Ganswindt, U., Corvin, S., Stenzl, A.: Histological 
verification of 11C-choline-positron emission/computed tomography-positive lymph nodes 
in patients with biochemical failure after treatment for localized prostate cancer. BJU 
Int. 102(4), 446–451 (2008) 

6. DeGrado, T.R., Coleman, R.E., Wang, S., Baldwin, S.W., Orr, M.D., Robertson, C.N., 
Polascik, T.J., Price, D.: Synthesis and evaluation of 18F-labeled choline as an oncologic 
tracer for positron emission tomography: initial findings in prostate cancer. Cancer 
Res. 61(1), 110–117 (2001) 

7. Oyama, N., Akino, H., Kanamaru, H., Suzuki, Y., Muramoto, S., Yonekura, Y., Sadato, 
N., Yamamoto, K., Okada, K.: 11C-acetate PET imaging of prostate cancer. J. Nucl. 
Med. 43(2), 181–186 (2002) 

8. Nuñez, R., Macapinlac, H.A., Yeung, H.W., Akhurst, T., Cai, S., Osman, I., Gonen, M., 
Riedel, E., Scher, H.I., Larson, S.: Combined 18F-FDG and 11C-methionine PET scans in 
patients with newly progressive metastatic prostate cancer. J. Nucl. Med. 43(1), 46–55 
(2002) 

9. Schuster, D.M., Votaw, J.R., Nieh, P.T., Yu, W., Nye, J.A., Master, V., Bowman, F.D., 
Issa, M.M., Goodman, M.: Initial experience with the radiotracer anti-1-amino-3-18F-
fluorocyclobutane-1-carboxylic acid with PET/CT in prostate carcinoma. J. Nucl. 
Med. 48(1), 56–63 (2007) 

10. Hodge, A.C., Fenster, A., Downey, D.B., Ladak, H.M.: Prostate boundary segmentation 
from ultrasound images using 2D active shape models: Optimisation and extension to 3D. 
Computer Methods and Programs in Biomedicine 84, 99–113 (2006) 

11. Knoll, C., Alcaniz, M., Grau, V., Monserrat, C., Juan, M.C.: Outlining of the prostate 
using snakes with shape restrictions based on the wavelet transform. Pattern Recognit. 32, 
1767–1781 (1999) 

12. Fei, B., Duerk, J.L., Sodee, D.B., Wilson, D.L.: Semiautomatic nonrigid registration for 
the prostate and pelvic MR volumes. Academic Radiology 12, 815–824 (2005) 

13. Fei, B., Lee, Z., Duerk, J.L., Lewin, J.S., Sodee, D.B., Wilson, D.L.: Registration and 
Fusion of SPECT, High Resolution MRI, and interventional MRI for Thermal Ablation of 
the Prostate Cancer. IEEE Transactions on Nuclear Science 51(1), 177–183 (2004) 

14. Yang, X., Akbari, H., Halig, L., Fei, B.: 3D non-rigid registration using surface and local 
salient features for transrectal ultrasound image-guided prostate biopsy. In: Proc. SPIE 
7964 (2011) 

15. Alpert, N.M., Bradshaw, J.F., Kennedy, D., Correia, J.A.: The principal axes 
transformation a method for image registration. The Journal of Nuclear Medicine 31(10), 
1717–1722 (1990) 

16. Chui, H., Rangarajan, A.: A new point matching algorithm for non-rigid registration. 
Computer Vision and Image Understanding 89(2-3), 114–141 (2002) 

17. Zhan, Y., Ou, Y., Feldman, M., Tomaszeweski, J., Davatzikos, C., Shen, D.: Registering 
histologic and MR images of prostate for image-based cancer detection. Acad. Radiol. 14, 
1367–1381 (2007) 

18. Yang, J., Blum, R.S., Williams, J.P., Sun, Y., Xu, C.: Non-rigid Image Registration Using 
Geometric Features and Local Salient Region Features. In: CVPR, pp. 1825–1832 (2006) 



 

Fei B, Master V, Nieh P, Akbari H, Yang X, Fenster A, Schuster D. A PET/CT directed, 3D ultrasound-

guided biopsy system for prostate cancer. Workshop on Prostate Cancer Imaging, The Annual Meeting 

of the Society of Medical Imaging Computing and Image Assisted Interventions (MICCAI), Toronto, 

Canada, September 18-22, 2011. A. Madabhushi et al. (Eds.): Prostate Cancer Imaging 2011, LNCS 6963, 

pp. 100–108, 2011 

 

A. Madabhushi et al. (Eds.): Prostate Cancer Imaging 2011, LNCS 6963, pp. 100–108, 2011.© Springer-

Verlag Berlin Heidelberg 2011. One print or electronic copy may be made for personal use only. 

Systematic reproduction and distribution, duplication of any material in this paper for a fee or for 

commercial purposes, or modification of the content of the paper are prohibited. 

 

  


	Fei_2011_MICCAI_Biopsy_System.pdf
	A PET/CT Directed, 3D Ultrasound-Guided Biopsy System for Prostate Cancer
	Introduction
	Multimodality Molecular Image-Guided Biopsy System
	Automatic Segmentation of 3D Prostate Ultrasound Images
	Nonrigid Registration of TRUS and CT Images
	Results
	Discussion and Conclusion
	References





