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ABSTRACT 

We are developing a molecular image-directed, 3D ultrasound-guided, targeted biopsy system for improved detection of 
prostate cancer. In this paper, we propose an automatic 3D segmentation method for transrectal ultrasound (TRUS) 
images, which is based on multi-atlas registration and statistical texture prior. The atlas database includes registered 
TRUS images from previous patients and their segmented prostate surfaces. Three orthogonal Gabor filter banks are 
used to extract texture features from each image in the database. Patient-specific Gabor features from the atlas database 
are used to train kernel support vector machines (KSVMs) and then to segment the prostate image from a new patient. 
The segmentation method was tested in TRUS data from 5 patients. The average surface distance between our method 
and manual segmentation is 1.61 ± 0.35 mm, indicating that the atlas-based automatic segmentation method works well 
and could be used for 3D ultrasound-guided prostate biopsy.      

Keywords: Automatic 3D segmentation, atlas registration, Gabor filter, support vector machine, ultrasound imaging, 
prostate cancer. 

1. INTRODUCTION 
Prostate cancer affects one in six men [1]. Systematic transrectal ultrasound (TRUS)-guided biopsy is considered as the 
standard method for definitive diagnosis of prostate cancer. However, the current biopsy technique has a significant 
sampling error and can miss up to 30% of cancers. We are developing a molecular image-directed, 3D ultrasound-guided 
biopsy system with the aim of improving cancer detection rate. Accurate segmentation of the prostate plays a key role in 
biopsy needle placement [2], treatment planning [3], and motion monitoring [4]. As ultrasound images have a relatively 
low signal-to-noise ratio, automatic segmentation of the prostate is difficult. However, manual segmentation during 
biopsy or treatment can be time consuming. We are developing automated methods to address this technical challenge.   

A number of segmentation methods have been reported for TRUS images [4-7]. A semiautomatic method by warping 
an ellipse to fit the prostate on TRUS images was presented [8,9]. A 2D semiautomatic discrete dynamic contour model 
was used to segment the prostate [10]. A level set based method [11,12] and shape model-based minimal path method 
[13] also were used to detect the prostate surface from 3D ultrasound images. Gabor support vector machine (G-SVM) 
and statistical shape model were used to extract the prostate boundary [2,14]. In this paper, we propose an automatic 3D 
segmentation method based on atlas registration and statistical texture priors. Our method does not require initialization 
of a shape model but use a subject-specific prostate atlas to train SVMs. The detailed steps of our method and its 
evaluation results are reported in the following sections.  
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2. METHODS 

Our segmentation method consists of three major components: (1) Atlas-based registration, (2) Hierarchical 
representation of image features using Gabor filter banks, and (3) Training of kernel support vector machine (KSVM). 
Fig.1 shows a schematic flow chart of our method. The steps are briefly described below. 

(1) Build a 3D TRUS image database. Every 3D TRUS image in the database will be preprocessed. In order to align all 
data in the database, one TRUS image is randomly selected as the template, and   others are registered to the 
template. The prostate surface is manually segmented from all registered TRUS data, which will be used as the 
prostate mask in Step 3. The atlas database includes pairs of 3D TRUS and the segmented prostate surface from 15 
patients.  

(2) Register the images in the atlas database to a newly acquired TRUS image. We previously developed several 
registration methods for the prostate [15-20]. We first align this template to the new data, and then apply this rigid-
body transformation matrix to all other data in the atlas database. Deformable registration methods are then used to 
obtain the spatial deformation field between the new TRUS image and the images in the database. The same 
transformation is applied to the segmented prostate surface in the database. Use a histogram matching algorithm, the 
intensity of every TRUS image in the database will be matched to the intensity of the new TRUS image.  

(3) Apply three Gabor filters at three orthogonal planes to extract prostate features from the registered image in the 
database as well as from the newly acquired TRUS image. Every TRUS image is divided into n subvolumes 
overlapped with each other. Every subvolume has three corresponding subvolumes with Gabor features at different 
planes. The three subvolumes are combined as the input of a training pairs for KSVM [15]. The corresponding 
subvolume at the same position in the prostate mask is used as the output of the training pairs. KSVM is applied to 
each subvolume training pairs with Gabor texture features. The KSVMs are then applied to the corresponding 
subvolumes from the newly acquired TRUS image in order to segment the prostate of the new patient. 

We validate our segmentation methods using a variety of evaluation methods [15,21-23]. Particularly, our 
segmentation is compared with the manual results. In order to get a quantitative evaluation of this comparison, we used 
the Dice overlap ratio and volume overlap error as defined below: 

1 2 1 22( ) / ( )Dice V V V V= +I                                                                       (1) 

1 2 1 2 1 2( ) / ( )Error V V V V V V= −U I U                                                        (2) 

where 1V and 2V are binary prostate segmented volumes. 

3. RESULTS 

We apply the segmentation method to TRUS images of five patients (matrix: 448 448 350× × , 0.190 0.190 0.195× ×
mm3/voxel). In our implementation, 36 KSVMs are attached to 36 subvolumes. The number of orientations and scales 
are 6 and 3 for the Gabor filter, respectively. In our experiment, five images were used for evaluation. Fig. 2 shows the 
non-rigid registration result between the newly acquired TRUS image and one image in the atlas database. As different 
patients have different sizes of the prostate and their TRUS images may be acquired at slightly different position and 
orientation, the non-rigid registration (translations, rotations, scaling, and deformation) is able to normalize the image 
with respect to the template and thus build the atlas database. As demonstrated in Fig. 3 and Fig. 4, the proposed 
automatic segmentation method works well for 3D TRUS images of the prostate and achieved similar results as 
compared to manual segmentation. Table 1 provides quantitative evaluation of the segmentation method for five patients.  
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Figure. 1. Schematic flow chart of the proposed algorithm for the 3D prostate segmentation.  
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