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ABSTRCT 
We have applied image analysis methods in the assessment of human kidney perfusion based on 3D dynamic contrast-
enhanced (DCE) MRI data. This approach consists of 3D non-rigid image registration of the kidneys and fuzzy C-mean 
classification of kidney tissues. The proposed registration method reduced motion artifacts in the dynamic images and 
improved the analysis of kidney compartments (cortex, medulla, and cavities). The dynamic intensity curves show the 
successive transition of the contrast agent through kidney compartments. The proposed method for motion correction and 
kidney compartment classification may be used to improve the validity and usefulness of further model-based 
pharmacokinetic analysis of kidney function.  
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1. INTRODUCTION 
The kidneys maintain normal homeostasis by filtering and excreting metabolic waste products, by regulating acid base 
balance, and by moderating blood pressure and fluid volume [1]. Renal diseases can lead to kidney failure that requires 
life-long dialysis or renal transplantation. Early detection and treatment can prevent this progression towards end stage 
renal disease. Therefore, it is important to monitor renal function precisely for the assessment of disease progression and 
follow-up of therapy. Dynamic contrast enhanced (DCE) magnetic resonance imaging (DCE-MRI) provides a promising 
non-invasive technique for the assessment of physiological parameters such as renal blood flow or glomerular filtration 
rate without the need of ionizing radiation [2]. In DCE-MRI, contrast agent Gd-DTPA is injected into the bloodstream. 
As the agent perfuse into the organ, the kidneys are imaged rapidly and repeatedly. During the perfusion, Gd- DTPA 
causes a change in the relaxation time of the tissue and creates a contrast change in the images [3]. As a result, the 
patterns of the contrast change provide functional information, while MRI provides good anatomical information which 
helps in distinguishing the diseases that affect different regions of the kidneys [4]. One of the major advantages of DCE-
MRI lies in the separable assessment of perfusion and filtration parameters for each kidney while blood tests just deliver 
global data [5].  

A major problem in abdominal imaging is motion artifacts due to respiration [2, 6-9]. Various methods have been 
proposed to reduce the motion artifacts [6]. Various image registration methods have been applied to the abdominal 
images [10-15]. The goal of this study is to evaluate non-rigid registration and classification methods to improve DCE-
MRI image quantification.  

 
2. METHODS 

DCE-MRI assesses the signal dynamics caused by contrast material transit through the renal cortex, medulla and the 
collecting system [16]. This technique implies the administration of gadolinium containing contrast agents, which enter 
the capillaries, are partly filtered in the glomeruli, then pass through the renal tubules or are evacuated by the veins. By 
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ݑ ൌ ሺூೝିூሻூหூหమାఉమሺூೝିூሻమ  ሺூೝିூሻூೝ|ூೝ|మାఉమሺூೝିூሻమ                                                  (2) 

The first term in (2) is derived directly from (1) given that the error gradient is zero where the error is at a minimum. 
In [25], the velocity formula contained only the first term in (2) without the constant, which uses only edges in the 
reference image as the passive internal force. It is based on pixel velocities caused by edge based forces. The term in the 
denominator serves to make the velocity equation more stable in image registration. To regularize the deformation field, 
Gaussian smoothing is performed on the velocity field since the estimated displacement obtained is local. The second 
term in (2) is then introduced in [22] to improve registration convergence efficiency and robustness. The resulting pixel 
velocity transformation field is filtered by a Gaussian kernel for global registration. The demons are responsible for 
applying force vectors on the deformable grid in moving images. Based on the location of the grid point in moving 
images with respect to the contours in fixed images, the demons decide the direction of the force vectors. Iteratively, the 
force created by the demons cause motion that is applied to the model. As the model draws closer to the contours, the 
forces applied decreases gradually after each iteration. At convergence, the determined deformation field in moving 
images is applied to warp into fixed images. 

For the DCE-MRI images, each of the epochs provides a 3D volume which is registered to a pre-determined base 
3D volume. For the fixed volume we first segment cavities manually and then use fuzzy C-mean classification methods 
[26-29] to class cortex and medulla. Finally we apply three classes object maps to all registered volumes and perform 
assessment of time courses. The conventional FCM algorithm is an iterative method that produces an optimal c partition 
for the image ሼݔሽୀଵே  by minimizing the weighted intergroup sum of squared error objective function ܯܥܨ ܯܥܨ ൌ ∑ ∑ ݔԡݑ െ ԡଶேୀଵୀଵݒ                                                        (3) 

where ሼݒሽୀଵ  is the characterized intensity center of the class k, and c is the number of underlying tissue types in 
the image which is given before classification. The ݑ represents the possibility of the voxel i belonging to the class k 
and it is required that ݑ א ሾ0,1ሿ and ∑ ୀଵୀଵݑ  for any voxel i.  

 

3. RESULTS 

Highly accelerated renal perfusion imaging was developed allowing high frequency imaging during the first-pass of 0.05 
mmol/kg ProHance using a 3D spoiled gradient echo technique with fat saturation and centric-radial k-space acquisition 
using a 430 mm2 FOV, TR=3.7ms, TE=1.7ms, flip=30°, 30 slices at 2.8 mm slice thickness, TFE factor = 120, 0.9 
second per dynamic scan volume, and iPAT factor=2. A phased array 4-element surface flexible body wrap coil is used. 
The Gd is infused at a constant rate over 20s. 

Figure 2 illustrates the visual assessment of the registration results at different time course. There is motion before 
registration, and if not corrected, the motion will introduce errors for the analysis of DCE-MR images. Figure 3 shows 
evaluation of the registration algorithm based on the comparison between the mean intensity time courses within a ROI 
before registration and after registration. Figure 4 indicates evaluation of the registration algorithm based on the 
comparison of the mean intensity time courses of cortex, medulla and cavities of the left kidney before and after 
registration. However, the curve is still not as smooth as we would expect. We first thought that registration may not be 
able to correct the motion. In order to explain this phenomenon we performed a phantom experiment without motion. We 
filled syringes and a bottle with Gd-DTPA and used them as phantoms. We used the same protocol to scan the phantoms. 
Figure 5 shows the intensity curves of two ROIs in two phantoms. There is still fluctuation in the time intensity curves 
even the phantoms did not have any motion. In MRI, signal-to-noise ratio (SNR) is trade-off with other image 
enhancements, such as higher resolution, shorter scan times [30, 31]. In our DCE-MRI, a 3D volume can be captured 
within one second and SNR in the images can be affected. MR intensity inhomogeneity affects the mean intensity in 
kidneys [24] [28]. Our phantom data show that motion may be one of the major factors but may not be the only factor 
that affect the quantification of DCE-MRI data.  
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Figure 2. Visual assessment of DCE-MR images before and after registration. a1 and b1 are a slice of the original reference images 
from two patients. a2 and b2 are the fusion image before registration, a3 and b3 are the floating image before registration. a4 and b4 are 
the fusion image after registration, a5 and b5 are the registered image. Red arrows show that the motion before registration and the 
improvement after registration.  
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Figure 3 Evaluation of the registration algorithm based on the comparison between the mean intensity time courses within a ROI 
before registration and after registration. ROI selection is depicted to the left of the time courses.  The Y is the intensity and X is the 
time frame.  

 

4. DISCUSSION AND CONCLUSION 

We applied a non-rigid image registration method to reduce motion artifacts in DCE-MRI data. We also applied a fuzzy 
C-mean classification to classify the kidney into three classes i.e. cortex, medulla, and cavities. The proposed image 
analysis approach can be used as a processing tool for kidney DCE-MRI quantification. 
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Figure 4. Time intensity curves of the three classes () before and after registration. The curves become smooth because of registration.  
The Y is the intensity and X is the time frame. 
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Figure 5. The time intensity curves (right) of the regions of interest (ROIs) in the phantoms without motion.  The intensity curves are 
not as smooth as we would expect, indicating that motion may not be the only factor that affects the DEC-MRI data quantification.  
The Y is the intensity and X is the time frame. 
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