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Abstract— Hyperspectral imaging is an emerging modality for 

medical applications. Its spectroscopic data can be utilized to 

noninvasively detect cancer. In this study, an advanced image 

processing and classification method is proposed to analyze 

hyperspectral image data for prostate cancer detection. Least 

squares support vector machines (LS-SVMs) were developed and 

evaluated for classifying hyperspectral data in order to enhance 

the detection of cancer tissue. The method was used to detect 

prostate cancer in tumor-bearing mice. Spatially resolved images 

were created to highlight the differences of the reflectance 

properties of cancer versus those of normal tissue. Preliminary 

results with 11 mice show that the hyperspectral imaging and 

classification method was able to reliably detect prostate tumors 

in the animal model. This study may lead to advances in the 
optical diagnosis of cancer using hyperspectral imaging. 
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I.  INTRODUCTION 

Hyperspectral imaging (HSI) is a spin-off from remote 
sensing technology developed by NASA for space exploration 
and earth observation [1]. Hyperspectral imaging can extend 
human vision to infrared and near-infrared wavelength regions. 
In fact, the imaging system produces several narrow band 
images at different wavelengths. Compared to conventional 
color cameras and other filter-based imaging systems, this 
system produces full neighboring spectral data with spectral 
and spatial information [2]. In medical applications, 
hyperspectral image data provide a powerful tool for non-
invasive tissue analysis. Hyperspectral imaging has been used 
to provide quantitative data regarding tissue oxygen saturation 
in patients with peripheral vascular disease [3], to detect 
ischemic regions of the intestine during surgery [4], to predict 
and follow healing in foot ulcers of diabetic patients [5], and to 
diagnose hemorrhagic shock [6]. 

Hyperspectral imaging has been used to discriminate 
between cancerous and normal tissue [7]. However, this 
method is limited to the visible wavelength range and requires 

the injection of fluorescent material. Hyperspectral imaging has 
also been evaluated for use in the cytologic diagnosis of cancer 
cells [8]. It has been reported that hyperspectral imaging is also 
used to detect gastric tumors in human subjects [9]. The 
spectral signatures of the gastric cancer and non-cancerous 
stomach tissue were created in infrared wavelengths. An HSI 
system with the spectral range of 500-600 nm has demonstrated 
its surgical application in breast cancer animal models [10]. 

The spectral information contained in hyperspectral image 
data allows characterization, identification, and classification of 
different types of tissue. Various image processing methods 
have been developed in an attempt to resolve the hyperspectral 
data classification problem. The support vector machine 
(SVM) is one of the successful approaches to multispectral data 
classification [11-14].  The properties of SVMs make them 
well-suited to tackle this classification problem as they can: 1) 
efficiently manage large input spaces; 2) deal with noisy 
samples in a robust way; and 3) produce sparse solutions, i.e., 
the decision boundary is expressed as a function of a subset of 
training samples. 

In this research, we performed in vivo hyperspectral 
imaging experiments and proposed an SVM method for 
hyperspectral image classification of prostate tumor tissue. We 
identify spectral signatures of both normal and cancerous tissue 
in animals. The details of the experiments and methods are 
described in the following sections. 

II. MATERIALS AND METHODS 

A. Hyperspectral Imaging System 

To capture the hyperspectral image data, a CRi camera 
systems (Caliper, Hopkinton, MA) was used to acquire images 
from animals. The system is a light-tight apparatus that uses a 
Cermax-type 300 Watt Xenon light source. This provides 
5600°K that spans the electromagnetic spectrum from 500–
950nm. The CCD is a 16-bit, high-resolution, scientific-grade 
imaging sensor. Four, fiber-optic, adjustable illuminator arms 
yield an even light distribution to the subject. The light radiates 
from the excitation source and then illuminates the sample. 
Reflect lights pass through the camera lens to the solid-state 
liquid crystal tuning element and finally to the CCD. The 
excitation and emission filter sliders hold two, 50-mm 
diameter, long pass filters. The long pass filters remove the 
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band light especially from the excitation source. These filters 
are color coded to indicate the wavelength they represent. The 
field of view (length × width) is from 3.4×2.5 cm to 10.2 ×7.6 
cm with variable zoom. The resolution is from 25 to 75 μm 
based on the zoom lens position. The fluence rate, i.e., the flow 
of photons over a set angle, is from 4 to 20 mW/cm

2
 based on 

the light position. The scan time is from 5 sec to 1 min. 

B. Animal Tumor Model  

An androgen-dependent prostate tumor xenograft model 

CWR22 was originally derived from a primary human 

prostatic carcinoma [15, 16]. The frozen CWR22 cancer cells 

were thawed in 37oC water, washed with tissue culture 

medium (RPMI 1640, Hyclone Laboratories, Inc., Logan, UT) 

with 20% calf serum (Hyclone Laboratories, Inc., Logan, UT), 

and were then filtered through a single layer of Nitex with 100 
µm porosity (Tetko, Inc., Briarcliff Manor, NY). The cells 

were suspended in Matrigel (BD Biosciences, Bedford, MA) 

with a volume at least equal to that of the cell volume. The 

suspension was draw into 1.0-cc syringes with 19-gauge 

needles for a 0.2-mL volume per injection. Athymic nude 

mice 4-8 weeks old were housed under controlled conditions 

(12 h dark and light cycles; 20 - 24OC temperature) and with 

freely reachable sterilized mouse chow [17]. A 12.5-mg 

sustained-release testosterone pellet (Innovative Research of 

America, Sarasota, FL) was implanted in each nude mouse 

one week before cell injection. Each animal was 
subcutaneously given an injection of cells suspension on the 

other side of the implanted testosterone. The animal 

experiments were approved by our Institutional Animal Care 

and Use Committee (IACUC) and conformed to the guidelines 

of the National Institutes of Health for the care and use of 

laboratory animals.  

In this study, the hyperspectral imaging experiment was 
performed on 11 male nude mice. Nine mice had human 
prostate tumors growing on the flank. During image 
acquisition, each mouse was anesthetized by i.p. injection of a 
ketamine and xylazine mixture at a dose of ketamine at 95 
mg/kg and xylazine at 5 mg/kg body weight. 

C. Support Vector Machine (SVM) for Image Classification   

In our study, least squares SVM (LS-SVM) is proposed to 
classify the hyperspectral data. LS-SVM has previously been 
applied to other applications [18]. This LS-SVM method 
allows us to interpret and design learning algorithms 
geometrically in the kernel space that is nonlinearly related to 
the input space, thus combining statistics and geometry in an 
effective way. In LS-SVMs, the algorithm attempts to identify 
a ridge regression for classification using binary targets. 
Therefore, LS-SVM overcomes some of the disadvantages of 
classical SVM that attempts to identify a large margin for 
classification. In LS-SVMs, equality constraints are considered 
for the classification problem with a formulation in the least 
squares sense. As a result the solution follows directly from 
solving a set of linear equations, instead of quadratic 
programming.  

We first segment the tumor on one group of hyperspectral 
images for LS-SVM training. For a new group of hyperspectral 
images, the trained LS-SVM is used to perform the automatic 
classification of tumors on the new hyperspectral images. We 
have input vectors of 251 elements in 2-nm spectral resolution 
images. The output of the trained LS-SVM is the classification 
result of normal and cancer tissue on the image. 

D. Classification Evaluation   

The performance of the automatic classification was 

evaluated with respect to the gold-standard maps created 

manually by a medical doctor. Sensitivity and specificity were 

used as statistical measures of the performance of the binary 

classification method [19-21]. Sensitivity measures the 

proportion of actual positives which are correctly identified as 

positive, i.e. the percentage of tumor pixels which are 
correctly identified as tumor tissue. When a pixel was not 

detected as a tumor pixel, the detection was considered as a 

false negative if the pixel was indeed a tumor pixel in the 

manually created map. When a pixel was detected as a tumor 

tissue, the detection was a false positive if the pixel was not 

tumor tissue.  Specificity measures the proportion of negatives 

which are correctly identified, i.e., the percentage of healthy 

tissue correctly identified as not having cancer.  

III. RESULTS  

Fig. 1 shows the hyperspectral images of a tumor-bearing 
mouse. The hyperspectral image cube consists of two-
dimensional images at each narrow band wavelength and one-
dimensional spectra at each pixel. As shown on the graph 
(Fig.1B), the spectra of the normal and tumor tissue are 
different. The spectral information was used by the SVM-based 
classification to differentiate normal and cancer tissue on the 
hyperspectral images. For the 11 mice, the sensitivity and 
specificity were 92.8±2.0% and 96.9±1.3%, respectively.   

IV. CONCLUSION  

We developed a hyperspectral image classification 

method for prostate cancer detection in an animal model. A 

least-squares support vector machine classifier was used to 

classify cancer tissue in animals. Our preliminary study has 

demonstrated the feasibility of using hyperspectral imaging 

and quantitative analysis methods for prostate cancer 

detection. Hyperspectral imaging offers a potential, non-

invasive tool for surgeons to inspect and assess a large area of 
tissue without taking tissue sample for pathology examination. 

This method allows continuous evaluation of suspicious 

cancer tissue without interrupting surgery and could, therefore, 

be used as a virtual biopsy tool.  
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Fig. 1. Hyperspectral imaging of a tumor-bearing mouse. A: HSI images obtained at different wavelengths. B: Schematic view of the HSI cube and the spectral 

graphs of two, sample pixels, one from cancerous and the other from normal tissue. The graph depicts the normalized reflectance for each wavelength in  that 

pixel. The X axis shows different wavelengths in nanometers, and the Y axis shows the normalized reflectance. C: Tumor-bearing mouse. D:  Cancer detection 

results using the LS-SVM pixelwise classification method in the nude mouse where green regions show the tumor.  
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