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Purpose: Transrectal ultrasound (TRUS) imaging is clinically used in prostate biopsy and therapy.

Segmentation of the prostate on TRUS images has many applications. In this study, a three-

dimensional (3D) segmentation method for TRUS images of the prostate is presented for 3D

ultrasound-guided biopsy.

Methods: This segmentation method utilizes a statistical shape, texture information, and intensity

profiles. A set of wavelet support vector machines (W-SVMs) is applied to the images at various

subregions of the prostate. The W-SVMs are trained to adaptively capture the features of the ultra-

sound images in order to differentiate the prostate and nonprostate tissue. This method consists of a

set of wavelet transforms for extraction of prostate texture features and a kernel-based support vec-

tor machine to classify the textures. The voxels around the surface of the prostate are labeled in sag-

ittal, coronal, and transverse planes. The weight functions are defined for each labeled voxel on

each plane and on the model at each region. In the 3D segmentation procedure, the intensity profiles

around the boundary between the tentatively labeled prostate and nonprostate tissue are compared

to the prostate model. Consequently, the surfaces are modified based on the model intensity pro-

files. The segmented prostate is updated and compared to the shape model. These two steps are

repeated until they converge. Manual segmentation of the prostate serves as the gold standard and a

variety of methods are used to evaluate the performance of the segmentation method.

Results: The results from 40 TRUS image volumes of 20 patients show that the Dice overlap ratio

is 90.3% 6 2.3% and that the sensitivity is 87.7% 6 4.9%.

Conclusions: The proposed method provides a useful tool in our 3D ultrasound image-guided pros-

tate biopsy and can also be applied to other applications in the prostate. VC 2012 American Associa-
tion of Physicists in Medicine. [http://dx.doi.org/10.1118/1.4709607]
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I. INTRODUCTION

Ultrasound imaging provides portable, cost-effective, real-

time imaging without exposure to radiation. It has been

widely used for image-guided diagnosis and therapy. Ultra-

sound image segmentation for boundary delineation of the

target object is a difficult task because of the uncertainty of

the segmentation boundary caused by image speckle and

because of a relatively low tissue-to-tissue contrast on the

image.1 Ultrasound segmentation is influenced by the quality

of the data. Attenuation, shadows, and signal dropout due to

the orientation dependence of image acquisition can result in

missing boundaries and thus can cause problems in ultra-

sound segmentation.

Ultrasound imaging has been widely used for the manage-

ment of prostate diseases. Prostate cancer is the second lead-

ing cause of cancer mortality in American men. It is

estimated that there are 240 890 new cases and 33 720 deaths

of prostate cancer in the United States in 2011.2 Transrectal

ultrasound (TRUS)-guided biopsy is the gold standard for de-

finitive diagnosis of the prostate. Currently, two-dimensional

(2D) ultrasound images are used to guide a biopsy needle to

take tissue sample for pathological examination. However,

the current procedure is limited by 2D image guidance and

does not have the capability for accurate, targeted biopsy of

suspicious lesions in the prostate. Three-dimensional (3D)

ultrasound image-guided biopsy systems are under evaluation

for prostate diagnosis.3,4 Precise prostate segmentation in 3D

ultrasound images has a key role in not only accurate place-

ment of a biopsy needle but also many prostate-related appli-

cations. For example, the segmentation of the prostate will

help physicians to plan brachytherapy for radiation seed im-

plantation and to measure the volume of the prostate gland.

Segmentation of the prostate in ultrasound images can be

difficult because of the shadows from the bladder, because

of the relatively small size of the gland, and because of a

low contrast between the prostate and non-prostate tissue.

Many methods were proposed to automatically segment the
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prostate in ultrasound images.5–24 Particularly, various shape

model based methods are used to guide the segmentation.

Gong et al. modeled the prostate shape using superellipses

with simple parametric deformations.10 Ding et al. described

a slice-based 3D prostate segmentation method based on a

continuity constraint, implemented as an autoregressive

model.8 Hu et al. used a model-based initialization and mesh

refinement for prostate segmentation.25 Hodge et al.
described 2D active shape models for semiautomatic seg-

mentation of the prostate and extended the algorithm to 3D

segmentation using rotational-based slicing.26 Tutar et al.
proposed an optimization framework where the segmenta-

tion process is to fit the best surface to the underlying images

under shape constraints.17 Zhan and Shen proposed a de-

formable model for automatic segmentation of the prostates

from 3D ultrasound images using statistical matching of

both shape and texture and Gabor support vector machines.23

Ghanei et al. proposed a 3D deformable surface model for

automatic segmentation of the prostate.9 Pathak et al. used

anisotropic diffusion filter and prior knowledge of the pros-

tate for the segmentation.15 Others proposed wavelet-based

methods for the segmentation of the prostate. Knoll et al.
used snakes with shape restrictions based on the wavelet

transform for outlining the prostate.27 Chiu et al. introduced

a semiautomatic segmentation algorithm based on the dyadic

wavelet transform and the discrete dynamic contour.7 Zhang

et al. improved the prostate boundary detection system by

tree-structured nonlinear filter, directional wavelet trans-

forms and tree-structured wavelet transform.24

Although advanced segmentation methods have been pro-

posed for prostate ultrasound images, manual segmentation

is the gold standard and is still used in many clinical applica-

tions because of reliability. However, manual segmentation

is time consuming, highly subjective, and often irreproduci-

ble. Due to the low contrast between the prostate and non-

prostate tissue and due to the low signal-to-noise ratio, there

is still unmet clinical need to develop reliable, automatic, 3D

segmentation methods for the prostate. In this research, we

propose a new segmentation method for 3D prostate ultra-

sound images.

In this study, we focus on the use of texture features and

statistical shape models for prostate segmentation. The

extraction of texture feature within and around the prostate

can be difficult. Many conventional image processing techni-

ques do not perform well on TRUS images. The large varia-

tion in feature size and shape reduces the effectiveness of

classical fixed neighborhood techniques. Textures at the

prostate and nonprostate regions are similar in many cases.

In other words, the distributions of texture features at the

prostate and nonprostate regions may overlap with each

other. Therefore, it is hard to linearly classify textures in

TRUS images. Moreover, it is hard to define a global charac-

terization of prostate textures because the same tissue may

have variable texture in different zones of the prostate.

In our proposed segmentation method, our contribution

includes the use of a wavelet support vector machine

(W-SVM) and statistical shape model. A set of trained

W-SVMs is employed to adaptively collect texture priors of

the prostates and differentiate tissue in different regions

around the prostate by classifying the textures using wavelet

transform features. Prostate shape statistics are incorporated

in a shape model to modify the segmentation after the feature

extraction step. Our method has two properties that improve

the ability to classify the textures. First, the method employs

several wavelet transform and each one extracts some aspects

of the features. Second, these texture extractions were applied

in three planes to classify the textures that are ambiguous in

one plane in some regions. In our method, the large shape

variation problem has been solved in three steps: (i) the

method utilizes the texture extraction that is independent to

the shape variability; (ii) a prostate probability model was

employed that covers different shapes of the prostate; (iii) the

manual box that was defined by the user will reconfirm the

shape and location of the prostate. Human prostate images

are used to validate the performance of the proposed segmen-

tation method. Sections II and III describe the details of the

methods and evaluation results, respectively.

II. METHODS

II.A. Overview of the segmentation method

A new 3D method is proposed to segment the prostate in

3D TRUS images. This method utilizes wavelet based tex-

ture extraction technique followed by kernel support vector

machines (KSVMs) to adaptively collect texture priors of

prostates and nonprostate tissues and classify tissues in dif-

ferent subregions around the prostate boundary by statisti-

cally analyzing their textures using wavelet features. Each

W-SVM consists of two elements, i.e., wavelet filter collec-

tion and SVM. The wavelet filter collection is utilized to

extract and characterize texture features in TRUS images.

The wavelet filter collection has wavelet filters at multiscales

and multiorientations. Therefore, it has the ability to charac-

terize textures with different dominant sizes and orientations

from noisy TRUS images. The KSVMs have been trained by

a set of 3D TRUS image samples in coronal, sagittal, and

transverse planes and at each subregion to label the voxels

based on the captured wavelet texture features. Each voxel is

labeled by three subregional KSVMs in three planes sepa-

rately. Each voxel in each plane is labeled by a real value

between 0 and 1 that represents the likelihood of a voxel

belonging to the prostate tissue. A statistical prostate shape

model is incorporated in the segmentation process. There-

fore, each voxel has a label of the statistical shape model

and three labels for KSVM in three planes. After defining

special weight for each label at each region, each voxel ten-

tatively labeled as prostate or nonprostate voxel. Conse-

quently, the surfaces of the prostate are modified based on

the intensity profiles of the model. The segmented prostate is

updated and compared to the shape model. The modification

and update steps are repeated until the algorithm converges.

Figure 1 shows the flowchart of the proposed segmenta-

tion method. The wavelet transforms are applied to 3D trans-

rectal ultrasound images in three planes. The wavelet is used

in 2D sagittal, coronal, and transverse images. The wavelet

features are labeled by the locally trained SVM. After
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applying the weight functions that were defined in the SVM

training step, the segmented prostate is used for registering

the probability model. The weight function of the probability

model is utilized to get the W-SVM. The result is modified

using the intensity profiles. The last two steps are repeated

until the algorithm converges. To improve the robustness of

the method, a manual intervention was employed. This step

was performed through defining a bounding box for the pros-

tate in one middle slice or two orthogonal slices. The proba-

bility model was scaled to the size of the box as explained in

Sec. II.D.

II.B. Wavelet-based texture extraction

Wavelet-based processing algorithms are superior due to

the ability of wavelets to discriminate different frequencies

and to preserve signal details at different resolutions. The

capability of the wavelet filters to zoom in and out can trans-

late signals to a location of a signal that is of interest and

dilate themselves properly to preserve the resolution of that

portion of the signal.28

The transformed coefficients are two variable functions.

The scaling and wavelet function are two functions, denoted

by ;ðx; yÞ and wðx; yÞ. The scaled and translated basis func-

tions are defined as

;j;m;n x; yð Þ ¼ 2j=2;ð2jx� m; 2jy� nÞ; (1)

wi
j;m;n x; yð Þ ¼ 2j=2wið2jx� m; 2jy� nÞ; i ¼ fH;V;Dg:

(2)

There are three different wavelet functions: wH x; yð Þ;
wV x; yð Þ; and wD x; yð Þ. Conceptually, the scaling function is

the low frequency component of the previous scaling func-

tion in two dimensions. Therefore, there is one 2D scaling

function. However, the wavelet function is related to the

order to apply the filters. The separable 2D basis functions

can be expressed as the product of two 1D basis functions.

Therefore, there are four basis functions for 2D signals as

given in Eq. (2).

; x; yð Þ ¼ ; xð Þ; yð Þ
wH x; yð Þ ¼ w xð Þ; yð Þ
wV x; yð Þ ¼ ; xð Þw yð Þ
wD x; yð Þ ¼ w xð Þw yð Þ; (3)

where ;(x,y) is the 2D scaling function; wH x; yð Þ;wV x; yð Þ;
wD x; yð Þ are the three 2D wavelet functions. For a 2D input

signal, the transform coefficients are obtained by projecting

the input onto the four basis functions given in Eq. (1).

Therefore, discrete wavelet transform of function f(x,y) are

expressed as

W/ j0;m; nð Þ ¼ 1ffiffiffiffiffiffiffiffi
MN
p

XM�1

x¼0

XN�1

y¼0

f x; yð Þ/j0;m;nðx; yÞ; (4)

Wi
w j;m; nð Þ ¼ 1ffiffiffiffiffiffiffiffi

MN
p

XM�1

x¼0

XN�1

y¼0

f x; yð Þ/i
j;m;nðx; yÞ;

i ¼ fH;V;Dg; (5)

where M and N are the sizes of the image.29 Using a shift,

multiply, and sum technique called convolution, wavelets

can be combined with portions of an unknown signal to

extract information from the unknown signal.30

Using the wavelet transform, the texture properties can be

characterized at multiple scales.31 For example, wavelet trans-

form was used to characterize liver diseases from ultrasound

FIG. 1. Flowchart of the wavelet support vector machine (W-SVM) based segmentation method.
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images.32 A texture is characterized by a set of channel var-

iances estimated at the output of the corresponding filter

bank. Ultrasound image textures can provide important fea-

tures for accurately defining the prostate, especially for the

regions where prostate boundaries are not clear.

Different types of wavelet transforms can be chosen for

different applications. The implementation of the discrete

wavelet frame transform is similar to that of the discrete

wavelet transform, except that there is no down sampling

operation.

Typical wavelet texture classification algorithms employ a

wavelet that is optimal in some aspect. However, for some

texture databases such as TRUS images, better classification

results are obtained when using multiple wavelets. Therefore,

in this study, biorthogonal wavelets 1.3 vertical details and

first approximation, 1.5 vertical details and horizontal details,

and 4.4 first approximation are employed to extract the texture

features of the prostate. Choosing these wavelets is based on

the ability of the segmentation of the TRUS images. Design-

ing biorthogonal wavelets allows more degrees of freedom

compared to orthogonal wavelets. One additional degree of

freedom is the possibility to construct symmetric wavelet

functions. A biorthogonal wavelet is not necessarily orthogo-

nal. As in the orthogonal case, w1ðtÞ, w2ðtÞ, and /ð2tÞ are

related by scaling functions, which are the consequence of the

inclusions of the resolution spaces from coarse to fine. In the

biorthogonal case, there are two scaling functions, which may

generate different multiresolution analyses and, accordingly,

two different wavelet functions. So, the numbers of coeffi-

cients in the scaling sequences may differ. Figure 2 shows

five wavelet filters that were employed for feature extraction.

II.C. W-SVM

SVMs are supervised classifiers, which use a small number

of exemplars selected from the tutorial dataset, with the inten-

tion to enhance the generalization ability. SVM has a pair of

margin zones on both sides of the discriminate function. SVM

is a popular classifier based on statistical learning theory as

proposed by Vapnik.33 The SVM framework is more appro-

priate for empirical mixture modeling, as nonseparable distri-

butions of pure classes can be handled appropriately, as well

as nonlinear mixture modeling.34 The training phase of SVMs

looks for a linear optimal separating hyperplane as a maxi-

mum margin classifier with respect to the training data. Since

the training data are not linearly separable, kernel-based SVM

methods are employed to classify the wavelet features.

Kernel-based SVM methods map data from an original input

feature space to a kernel feature space of higher dimensional-

ity and then solve a linear problem in that space.35 In this

study, kernel-based SVM is used to identify the wavelet fea-

tures of prostate tissue. Although these features may greatly

vary among different patients, the SVMs nonlinearly classify

texture features by extracting different wavelet features.

Since the prostate has different textures in different

regions, a series of W-SVMs are assigned to different parts

of the prostate in order to locally segment the prostate tissue.

Therefore, each W-SVM segments a subregion of the pros-

tate with an intention to achieve robust classification of pros-

tate texture features by kernel-based SVM. The method

defines a hyperplane to classify the subjects by minimizing

the following function:

FIG. 2. Feature extraction using various wavelet filters. (a–c) Original

images in sagittal, coronal, and transverse directions, respectively. (d–f)

Biorthogonal 1.3 for vertical details in the corresponding images. (g–i) Bio-

rthogonal 1.3 first approximation. (j–l) Biorthogonal 1.5 vertical details.

(m–o) Biorthogonal 1.5 horizontal details. (p–r) Biorthogonal 4.4 first

approximation.
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1

2
ðwTwþ b2Þ � C

XN

i¼1

ni (6)

subject to

yi wT/ xið Þ þ b
� �

� 1� ni; ni � 0; i ¼ 1;…;N; (7)

where C is a penalty parameter and ni is slack variables to

measure the deviation of training samples. w is the vector of

coefficients and b is a constant offset. To find the optimal

input parameter values, the grid search method is utilized.

The index i labels the N training cases. y 2 61 is the class

label, and xi is the independent variable. The kernel / is

used to transform data from the input to the feature space.

There are number of kernels that can be used in SVM mod-

els. In our implementation, radial basis function (RBF) is

employed as follows:

/ ¼ expð�c xi � xj

�� ��2Þ: (8)

The RBF is one of the most popular kernel types employed

in SVM. This kernel results in localized and finite responses

across the full range of the real x-axis.

In the proposed segmentation procedure, the trained

W-SVMs are employed to tentatively label voxels around

the surface of the prostate as either prostate or nonprostate

voxels. The W-SVMs are localized, trained, and employed

at different regions and in the coronal, sagittal, and trans-

verse planes. By using these tentatively labeled maps, the

surface of the prostate can be delineated based on the bound-

ary between the tentatively labeled prostate and nonprostate

voxels in the three planes. For each voxel in each region,

three weight functions are assigned corresponding to the seg-

mentation in the three planes

WsLs þWcLc þWtLt; (9)

where Ws, Wc, and Wt are weight functions in the sagittal,

coronal, and transverse planes, respectively. Ls, Lc, and Lt

are SVM labels in the sagittal, coronal, and transverse

planes, respectively. These weight functions are obtained

from the optimization processing that finds the best result

from ten manually segmented prostates. The weight func-

tions are multipliers as described in Eq. (9), which are opti-

mized by maximizing the function (9) for prostate voxels

and by minimizing it for nonprostate voxels for the ten seg-

mented prostates. Therefore, the optimization problem con-

sists of maximizing or minimizing the function (9) by

choosing input values from 0 to 1 and by computing the

value of the function.

A number of W-SVMs on different regions of the surface

model are placed and trained to adaptively label the tissue

based on its texture and location. Each W-SVM is composed

of five wavelet filter banks, voxel coordinates, and a kernel-

based SVM. Figure 3 shows the flowchart of the training

step to calculate the weight functions and to train the SVMs

in each region. The segmented prostate is modified based on

the probability model and the intensity profiles. By repeating

these steps of voxel labeling and model-based deformation,

the method is able to segment the prostate.

II.D. Probability shape model

The probability prostate model is created using ten man-

ually segmented prostate. These ten binary 3D images are

registered through the principle axis transformation. The reg-

istered models are overlaid together and create a probability

model of the prostate, within which each pixel is labeled

with a value between 1 and 10. The principal axis transfor-

mation is inspired from the classical theory of rigid bodies.36

A rigid body can be uniquely localized by defining the coor-

dination of its center of mass and its orientation with respect

to its center of the mass. For any rigid body, the center of

mass and principal axes can be determined based on the ge-

ometry of the object. For symmetric geometries, axes of

symmetry are the same as the principal axes and, in general,

form an orthogonal coordinate system, with their origin at

the center of mass.37 The inertia matrix in the principal axis

coordinate system is diagonal. Let us consider two orienta-

tions and locations for a volume with no assumptions about

the orientation or location of the reference volumes. If the

reference volumes represent the same object, the centers of

mass C1 and C2 will represent the same physical point in the

FIG. 3. Flowchart of the training for the support vector machines (SVMs) in three orthogonal planes from the manually segmented prostate images.
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object, independent of orientation or scale. The inertia matri-

ces, Ii, for the two reference volumes can be expressed as a

similarity transformation

Ii ¼ SiIS
T
i ; (10)

where I is the inertia matrix in the principal axis coordinate

system, Si is the rotation matrix that is the matrix of eigen-

columns determined from Ii, and the eigencolumns are

orthonormal vectors directed along the principal axes. This

equation geometrically represents a rotation of I relative to

the original image coordinate axes. I1 and I2 are related by

the following equation:

I2 ¼ S2ST
1 I1S1ST

2 : (11)

Registration of image 1 to image 2 can be obtained by a

translation to the center of mass coordinate system followed

by the rotation S1ST
2 . Then, the size of 3D prostate images is

scaled in three axes based on principle axes lengths. After

registration, the prostate models overlay together, and the

shape probability model is created based on the number of

overlaying prostates in each voxel. Figure 4 shows the prob-

ability model in three planes and at different sections.

II.E. Intensity profile model

An average model of intensity profiles is created using

the intensity profiles of the ten training 3D prostate images.

Let Lp ðp ¼ 1;…; 10Þ be the intensity profile along the lines

passing through the center of mass of the prostate and

including both sides of the prostate boundary

L ¼ 1

4l2

Xi¼l

i¼�l

Xj¼l

j¼�l

IjBþk
B�k; (12)

where I is a voxel intensity, i and j are two orthogonal direc-

tions regarding to the profile axis, 2l is the profile width, 2k
is the profile length, and B is the location of the boundary of

the prostate in the profile. The profiles are evaluated in all

angles and with different widths. Considering just one single

line of voxels, very noisy results are obtained. Figure 5

shows the center of mass of a prostate and the intensity pro-

file with a width of nine voxels. Figure 6 shows the intensity

profile with different cube widths. When the width increases,

the intensity profile shows more consistent shape in different

patients. Therefore, the profile width is increased to find a

consistent intensity profile shape among all prostates. Figure 7

shows a sample of intensity profiles in three orthogonal direc-

tions. The width of the cubes is 101 pixels and the profiles

pass through the center of mass of the prostate. The profiles

are parallel with sagittal, coronal, and transverse planes.

Using ten prostate models, average intensity profiles were

generated across the prostate boundaries. Next, the similarity

of the intensity profiles in the experimental cases is compared

with the model to identify the prostate boundary. These

detected points are then incorporated into the segmentation

scheme as described above.

II.F. Evaluation criteria

Quantitative performance assessment of the method was

done by comparing the results with the corresponding gold

standard from manual segmentation. The Dice similarity was

employed as a performance assessment metric for the pros-

tate segmentation algorithm. The Dice similarity was com-

puted as follows:

DiceðS;GÞ ¼ 2 S \ Gj j
Sj j þ Gj j � 100%; (13)

where S represents the voxels of the prostate segmented by

the algorithm and G represents the voxels of the correspond-

ing gold standard from manual segmentation.

The volume error was used as another performance assess-

ment metric to evaluate the prostate segmentation algorithm.

Volume error, VE(S, G), represents the signed volume error

of a segmented prostate volume, S, compared to the gold

standard, G, as a percentage of the gold standard prostate vol-

ume, which is described below:38

VE S;Gð Þ ¼ ðS� GÞ=G� 100%: (14)

Sensitivity, Sen(S, G), represents the proportion of the

segmented prostate volume, S, that is correctly overlapped

with the gold standard volume, G

Sen S;Gð Þ ¼ TP=G� 100%; (15)

where TP is the true positive volume and represents the over-

lapped volume of the segmented prostate and the gold

standard.

False negative rate (FNR) is another evaluation criterion.

When a voxel was not detected as a prostate voxel, the

FIG. 4. 3D probability shape model of the prostate in the sagittal (left panel),

coronal (center panel), and transverse (right panel) directions. The intensity

represents the probability of the voxel that belongs to prostate tissue with a

probability range from 100% (white) to zero (dark). The top and bottom

rows represent different slice positions.
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detection was considered a false negative if the voxel was a

voxel of prostate on the gold standard that was established

by manual segmentation. The FNR was defined as the num-

ber of false negative voxels divided by the total number of

the prostate voxels on the gold standard. The gold standard

is a binary image consisting of voxels that are labeled as

prostate and other voxels that are assumed as nonprostate

voxels.

FIG. 5. Left: Example ultrasound image of the prostate that shows the center of mass and the cubes passing through the center with different angles. Right: In-

tensity profile corresponding to the white cube in the image on the left. Black vertical lines show the location of the prostate boundaries.

FIG. 6. Changes in intensity profiles with respect to the width of the cube [(a) 3 voxels, (b) 19 voxels, (c) 39 voxels, (d) 59 voxels, (e) 79 voxels, and (f) 99

voxels]. Black vertical lines in the graphs show the location of the prostate boundaries.
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Error ratio represents the proportion of the volume that is

not correctly overlapped with the gold standard volume. As

is shown in Eq. (18), false positive volume and false nega-

tive volume are the key parts of the calculation method

ERðS;GÞ ¼ FPþ FN

Gþ S
� 100%; (16)

where FP and FN are false positive and false negative,

respectively.

III. EXPERIMENTAL RESULTS

The proposed 3D segmentation method was applied to 40

transrectal ultrasound image volumes from 20 patients. The

TRUS images were acquired from patients who were clini-

cally selected to undergo the prostate biopsy procedure. An

HDI-5000 ultrasound system and an end-firing 5–9 MHz

TRUS transducer probe were used for the image acquisition.

Each patient has two image volumes acquired at different

times. The voxel size of the image is 0.19� 0.19� 0.19

mm3. The size of the images is 448� 448� 350 voxels. The

FIG. 7. Prostate ultrasound images (left) and the corresponding intensity profiles (right) of the cubes passing through the prostate in three orthogonal directions.

The white lines on the images show the cube boundaries. The black vertical lines on the profiles show the location of the prostate boundaries.
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prostate was manually segmented by drawing the prostate

boundaries on individual image slices.

The experimental data set differed from the training set.

Four slightly different approaches were applied to segment

the prostate. They include (1) W-SVM; (2) the probability

shape model-based W-SVM (MW-SVM); (3) MW-SVM

plus one bounding box for the prostate (MW-SVM1). The

user placed one bounding box in one image slice. The algo-

rithm assumes that the prostate is located within the box. (4)

MW-SVM with two bounding boxes for the prostate (MW-

SVM2). The user placed two bounding boxes in two orthog-

onal image slices. The algorithm assumes that the prostate is

located within the two orthogonal boxes.

Figure 8 shows the segmentation result of a typical image

volume of the prostate using the W-SVM segmentation

method. As shown in the images, the segmented prostate

presents the shape of the actual organ. Without the probabil-

ity shape model, the boundaries are not smooth and noise

appears around the boundary region.

The MW-SVM performs well (Fig. 9). The segmented

boundaries are close to those by manual segmentation gold

standard. Figure 10 shows the 3D overlay visualization of

the automatic and manual segmentation of the prostate, indi-

cating an excellent overlap between two segmented results

in three dimensions.

Table I shows the quantitative evaluation results from 40

image volumes. With a simple user intervention, i.e., placing

two bounding boxes for the prostate, the quality of the seg-

mentation was improved significantly. The Dice overlap

ratios were increased from 74.5% 6 9.5% for the MW-SVM

FIG. 8. Segmentation result of the prostate using the wavelet support vector machines method. (a–c) Original image in the sagittal, coronal, and transverse

directions, respectively. (d–f) Segmented prostate in the three corresponding images.

FIG. 9. Prostate segmentation results in sagittal (left), coronal (center), and transverse (right) directions. On each image, the boundary from the automatic seg-

mentation is close to the smooth boundary from the manual gold standard.
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method to 90.3% 6 2.3% for the MW-SVM2 method. The

minimum of Dice ratio is 87.2% for MW-SVM2, indicating

that the method can reliably segment all the 40 prostates

with a relatively high accuracy. The probability shape model

also improves the quality of the segmentation but not dra-

matically. After the use of the shape model, the Dice overlap

ratios were increased by only 2.7%.

For the MW-SVM2 method, the sensitivity is

87.7% 6 4.9% and the false positive rate is 0.5% 6 0.2%,

indicating the method can detect prostate tissue with a rela-

tively low error. The mean volume error is 6.6% 6 3.6%,

which demonstrates that the measurement of prostate vol-

ume is accurate as compared to the manual segmentation

gold standard.

To estimate the importance of the bounding box and the

probability model, a simple experiment was performed. The

probability model was located in the user defined bounding

box and the probabilities more than 50% were assumed as the

prostate. The Dice ratio in this experiment is 88.6 6 1.7%

(82.6%–90.7%) which shows the importance of combining

the W-SVM, the probability model, and the bounding box.

The method has been evaluated through multiple rounds

of cross validation by utilizing different partitions of training

and testing image groups. Fifty TRUS images were ran-

domly divided into five groups and each group has ten

images. The method has been evaluated in five rounds. In

each round, one group of ten images has been utilized for

training and the other four groups of 40 images have been

used to test the method. Table II shows the numerical results

of these evaluations, which indicate the robustness of the

segmentation method.

IV. DISCUSSION

In this paper, we proposed a W-SVM and a statistical shape

model for prostate segmentation in transrectal ultrasound

images. The model-based W-SVM segmentation method suc-

cessfully segmented all 40 prostate ultrasound images.

FIG. 10. Three-dimensional visualization of the segmented prostate (darker region) as compared to the manual gold standard (brighter region) in four different

views (a–d) of the same human prostate.

TABLE I. Quantitative evaluation of four segmentation methods: (1) W-SVM; (2) model-based W-SVM (MW-SVM); (3) MW-SVM plus one bounding box

for the prostate (MW-SVM1). The user places one bounding box in one image slice. The algorithm assumes that the prostate is located within the box. (4)

MW-SVM with two bounding boxes for the prostate (MW-SVM2). The numbers are described as mean 6 standard deviation (minimum–maximum) of 40

prostate image volumes in percentage.

Methods MW-SVM2 MW-SVM1 MW-SVM W-SVM

Dice overlap ratio (%) 90.3 6 2.3 (87.2–94.7) 81.2 6 8.3 (62.0–93.8) 74.5 6 9.5 (56.3–90.8) 71.8 6 10.2 (53.5–91.2)

Sensitivity (%) 87.7 6 4.9 (78.9–96.9) 79.5 6 9.0 (58.5–95.7) 77.6 6 17.0 (39.2–99.5) 73.3 6 17.4 (39.6–97.9)

False negative rate (%) 12.3 6 4.9 (3.1–21.2) 20.5 6 9.1 (4.3–41.5) 22.4 6 17.0 (0.5–60.8) 26.7 6 17.4 (2.1–60.5)

Volume error (%) 6.6 6 3.6 (0.4–12.3) 16.3 6 9.7 (1.4–40.2) 29.6 6 20.8 (0.0–88.5) 29.3 6 19.4 (0.3–76.2 )

Error ratio (%) 9.7 6 2.2 (5.3–12.9) 18.8 6 8.3 (6.2–38.0) 25.5 6 9.5 (9.2–43.7) 28.2 6 10.2 (8.8–46.5)

2981 H. Akbari and B. Fei: 3D ultrasound image segmentation 2981

Medical Physics, Vol. 39, No. 6, June 2012



Although others have previously proposed methods to

segment the prostate in TRUS images, most of the methods

have been used to segment the prostate in 2D images. Only a

few papers have been published to segment the prostate in

3D TRUS images. The advantage of our method is the com-

bination of texture information and geometrical knowledge

for prostate segmentation.

Previously, Tutar et al. proposed a method for 3D TRUS

segmentation that was defined in an optimization framework

as fitting the best surface to the underlying images using

shape constraints.39 To derive these constraints, the method

modeled the shape of the prostate using spherical harmonics

of degree eight and performed statistical analysis on the shape

parameters. After user initialization, the algorithm identifies

the prostate boundaries. This method was evaluated in 30

TRUS images to segment the prostate. By assuming the aver-

age of manual boundaries as the ground truth, the method

computed the segmentation error. The percent volume overlap

was 82.8% 6 6.2%.

In another study, Ghanei et al. proposed a discrete struc-

ture model made from a set of vertices in the 3D space that

form triangle facets.9 The model converges from an initial

shape to its equilibrium iteratively, by a weighted sum of the

internal and external forces. Internal forces are based on the

local curvature of the surface and external forces are

extracted from the volumetric image data by applying an

appropriate edge filter. The method applied the proposed de-

formable model to segment the prostate in ten ultrasound

image sets. The average similarity was 88.58% and the aver-

age difference was 11.42%.

In a recent study, the concept of an ignorance function

was used to determine the best threshold with which to

binarize an image in order to segment the prostate.40 The

approach introduced a method to construct such functions

from t-norms and automorphisms. By means of these new

measures, the method represented the degree of ignorance of

the expert when given one fuzzy set to represent the back-

ground and the other to represent the object. This method

was able to segment the prostate with an error of 15%–20%.

Several features of the proposed segmentation method con-

tribute to the accuracy and robustness of the algorithm. First,

the use of wavelet transform for texture extraction is impor-

tant for the segmentation method. The segmentation approach

was partially inspired by physician’s manual segmentation

where prostate texture definition, boundary evaluation, and

anatomical knowledge are combined to differentiate prostate

and nonprostate tissue. In this algorithm, wavelet transform

was employed to extract the texture features in ultrasound

images. Intensity profile was utilized to modify the boundary.

The probability model was used as the anatomical knowledge.

Texture analysis is mainly used to segment the image into

some homogeneous subregions. Texture properties can then

be characterized by the spatial distribution of gray levels in a

neighborhood and are utilized to determine regional homoge-

neity. Texture extraction using wavelet transform can provide

a precise and unifying frame work for the analysis and charac-

terization of a signal at different scales.41 The selection of the

appropriate wavelet transforms was based on the best results

for prostate classification. Different types of wavelet trans-

form were applied and classified using SVM. The best results

were chosen for texture extraction. The method particularly

includes a set of trained SVMs to adaptively collect texture

priors of the prostates and to differentiate tissues in different

zones around the prostate boundary by statistically analyzing

their textures.

Second, the kernel-based support vector machine is a key

component of the segmentation algorithm. The inputs of

each kernel-based SVM consist of wavelet transformations

components. Since the prostate textures are different in dif-

ferent regions of the prostate, the W-SVMs were locally

trained and employed in order to characterize texture fea-

tures in ultrasound images. Since the wavelet filter bank has

different wavelets transform, it is able to characterize tex-

tures with different dominant sizes and orientations from

noisy ultrasound images.

Third, the intensity profiles and the probability shape

model are an integral part of the segmentation algorithm. We

expect that the prostate has geometry and location information

with a series of constraints. These constraints were incorpo-

rated in the probability model. The model prevents significant

variations from the popular shape. The model modifies the

segmentation based on prostate anatomical knowledge. The

intensity profiles were used to improve the segmentation

based on boundary detection. As the ultrasound images are

noisy, the profiles from a large cube that passes through the

prostate help to locate prostate boundaries. When the cube

has a smaller diameter, the intensity profile is noisy and not

consistent among patients. When the cube is large with a di-

ameter about 100 voxels, the profile becomes smooth and

thus it is easier to locate the prostate boundary.

Fourth, the manual selection of two bounding boxes for

the prostate is a simple step but it is important to improve

the segmentation results. This was easily implemented by

quickly viewing the image volume to locate the location of

TABLE II. Cross validation results of five partitions of training and test subjects. The numbers are described as mean 6 standard deviation (minimum–

maximum) of 40 prostate image volumes in percentage.

Rounds 1 2 3 4 5

Dice overlap ratio (%) 90.3 6 2.1 (82.8–93.9) 91.2 6 2.2 (81.4–94.5) 91.3 6 2.2 (82.0–94.5) 90.9 6 2.0 (81.5–93.9) 90.8 6 1.7 (86.9–94.1)

Sensitivity (%) 93.6 6 2.1 (88.2–97.6) 89.3 6 2.9 (84.8–95.2) 92.6 6 2.6 (87.4–97.8) 91.8 6 2.4 (87.4–96.9) 94.0 6 2.0 (90.2–97.3)

False negative rate (%) 6.4 6 2.1 (2.4–11.8) 10.4 6 2.9 (4.8–15.2) 7.4 6 2.6 (2.2–12.6) 8.2 6 2.4 (3.1–12.6) 6.0 6 2.0 (2.7–9.8)

Volume error (%) 13.8 6 5.2 (5.2–32.0) 6.4 6 4.2 (26.8–1.5) 10.2 6 5.0 (3.4–30.3) 10.3 6 4.8 (3.2–30.4 ) 13.0 6 4.1 (5.3–22.3 )

Error ratio (%) 9.7 6 2.1 (6.1–17.2) 8.7 6 2.2 (5.5–18.6) 8.7 6 2.2 (5.6–18.0) 9.1 6 2.0 (6.1–18.5) 9.2 6 1.7 (5.9–13.1)
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the prostate before the automatic segmentation. The 3D seg-

mentation takes 2–3 min for a desktop computer with 16 GB

RAM and 3.40 GHz (4 Core) processor using MATLAB code.

The time can be reduced to a few seconds in a high-

performance PC with graphical processing unit (GPU) and

with C code.

V. CONCLUSION

A set of W-SVMs and a statistical shape model are devel-

oped and evaluated for ultrasound prostate image segmenta-

tion. Wavelet transform was employed for prostate texture

extraction. W-SVMs are located at different regions of the

prostate surface in order to classify prostate and nonprostate

tissue. The W-SVM method employs a learning mechanism

to automatically collect texture features in different regions

of the prostate. Compared to 2D prostate segmentation meth-

ods, the proposed method can segment the prostate in three

dimensions. The segmentation method with support vector

machines and wavelet transform can be applied to various

applications in not only the prostate but also other organs.
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