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ABSTRACT
Background and objective Combined magnetic
resonance/positron emission tomography (MR/PET) is a
relatively new, hybrid imaging modality. MR-based
attenuation correction often requires segmentation of the
bone on MR images. In this study, we present an
automatic segmentation method for the skull on MR
images for attenuation correction in brain MR/PET
applications.
Materials and methods Our method transforms
T1-weighted MR images to the Radon domain and then
detects the features of the skull image. In the Radon
domain we use a bilateral filter to construct a multiscale
image series. For the repeated convolution we increase
the spatial smoothing in each scale and make the width
of the spatial and range Gaussian function doubled in
each scale. Two filters with different kernels along the
vertical direction are applied along the scales from the
coarse to fine levels. The results from a coarse scale give
a mask for the next fine scale and supervise the
segmentation in the next fine scale. The use of the
multiscale bilateral filtering scheme is to improve the
robustness of the method for noise MR images. After
combining the two filtered sinograms, the reciprocal
binary sinogram of the skull is obtained for the
reconstruction of the skull image.
Results This method has been tested with brain
phantom data, simulated brain data, and real MRI data.
For real MRI data the Dice overlap ratios are 92.2%
±1.9% between our segmentation and manual
segmentation.
Conclusions The multiscale segmentation method is
robust and accurate and can be used for MRI-based
attenuation correction in combined MR/PET.

INTRODUCTION
Combined magnetic resonance/positron emission
tomography (MR/PET) is an emerging imaging
modality that can provide metabolic, functional,
and anatomic information and therefore has the
potential to provide a powerful tool for studying the
mechanisms of a variety of diseases.1 Attenuation
correction (AC) is an essential step in the study of
quantitative PET imaging of the brain. However, the
current design of combined MR/PET does not offer
transmission scans for attenuation correction
because of the space limit of the scanner. In contrast
to CT images used in PET/CT systems, MR images
from MR/PET systems do not provide unambiguous
values which can be directly transformed into PET
attenuation coefficients. Therefore, several
MR-based attenuation correction methods have
been proposed in which attenuation coefficient

maps are derived from corresponding anatomic MR
images. According to the methods used to obtain an
AC map, we classified the current MR-based
AC methods into three categories: segmentation-
based,2–5 registration-based,6–8 and MR sequence-
based methods.9–11 In the segmentation-based
AC methods, MR images are segmented or classified
into different regions which identify tissue of signifi-
cantly different density and composition based on
different segmentation techniques. We then assigned
the voxels belonging to different regions’ theoret-
ical, tissue-dependent attenuation coefficients to
obtain the AC map. With registration-based AC
methods, MR-based AC maps are derived from a
template, atlas, or CT images by means of registra-
tion and machine learning. In MR sequence-based
methods, MR images acquired with special MR
sequences such as ultra short echo (UTE),10

dual-echo UTE,9 and UTE triple-echo,11 were
classified to generate 3-class (bone, air, soft tissue)
or 4-class (bone, air, soft tissue, and adipose tissue)
AC maps.
Various techniques have been proposed to

segment brain structures on MR images.12–15

Subsequent work has focused on developing auto-
mated algorithms specifically for skull-stripping in
brain MR images. Once the skull is segmented on
MR images, the scalp that is outside the skull and
the brain tissue inside the skull can be obtained
using various image processing methods.16–18 A
recent study by Segonne et al19 divided the current
automatic approaches for skull stripping into three
categories: region-based methods,20–23 boundary-
based methods,24 25 and hybrid approaches.26–29

Skull-stripping methods can also be categorized into
three types,30 that is, intensity-based methods,31 32

morphology-based methods,27 33–38 and deformable
model-based methods.28 39–45 Because of the bone
complexity in the head, a combination of two or
more methods is often used for skull segmentation.
Techniques have also been developed to make use of
information obtained using other imaging modal-
ities for skull segmentation. For example, a multi-
scale segmentation approach was developed to be
able to use both CT and MR information for seg-
mentation.46 Although this approach is desirable for
providing accurate details regarding both skull and
soft tissue, it is not generally practical as it requires
image acquisitions from both modalities. Multiple
weighted MR images such as proton density (PD)
and T1-weighted images have been used to segment
the skull, scalp, cerebrospinal fluid (CSF), eyes, and
white and gray matter.47 T2- and proton-density-
weighted MR images have been applied to generate
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a brain mask encompassing the full intracranial cavity.48

Multispectral MR data with varying contrast characteristics have
been used to provide additional information in order to distin-
guish different types of tissue.49 Although the use of multiple
weighted MR data, including PD images, may improve skull seg-
mentation, in the vast majority of brain imaging studies only
high-resolution, T1-weighted images are collected. Comparison
studies have demonstrated that the most commonly used skull-
stripping algorithms have both strengths and weaknesses, but
that no single algorithm is robust enough for use in large-scale
analyses.42 50 51 Due to the presence of imaging artifacts, ana-
tomical variability, varying contrast properties, and registration
errors, it is a challenge to achieve satisfactory results over a wide
range of scan types and neuro-anatomies without manual inter-
vention. As the number of study subjects and participating institu-
tions increase, there is a need to develop robust skull
segmentation algorithms for MR images.

In this study, we propose an automatic segmentation method
for the skull on brain MR images. Our contribution includes the
use of Radon transformation for T1-weighted MR images and
the use of multiscale bilateral filtering processing of MR sino-
gram data in the Radon domain. Our particular application
focuses on the attenuation correction application in combined
MR/PET. Our new approach is able to increase the
signal-to-noise ratio for detection of the skull in MR sinogram
data. Using this multiscale scheme, the algorithm can refine the
segmentation step-by-step from the coarse to fine scales. This
segmentation method has been evaluated using brain phantom
data, simulated brain data, and real MRI data. In the following
sections, we will report the methods and evaluation results.

METHODS AND MATERIALS
Algorithmic overview
One particular challenge for skull segmentation is caused by the
fact that the skull has small MR signals on T1-weighted MR
images.52 Our approach includes unique steps for the skull seg-
mentation. (1) Preprocessing of T1-weighted MR images. The
original MR images are preprocessed using a threshold and
Gaussian filter in order to remove background noise and to
smooth the original image. (2) The MR images are transformed
using the Radon transform in order to obtain the sinogram data
of the MR images. (3) The sinogram data are decomposed using
bilateral filters and by a factor of 2 in every scale in order to
obtain multiscale sinogram data. (4) Sinogram data at different
scales are filtered using two bilateral filters with different kernels
in the vertical direction. The two, filtered sinograms are then
combined into one set of sinogram data for further processing.
The result from a coarse scale supervises the segmentation in
the next fine scale in order to obtain the reciprocal binary sino-
gram that includes only the skull. (5) The reciprocal binary sino-
gram data are reconstructed in order to obtain the segmented
skull image.

Radon transform
As described in figure 1, our Radon transform is defined as
follows, that is, from a complete set of line integralsPaðsÞ:

PaðsÞ¼ [Rf]ða;sÞ

¼
ð1
�1

ð1
�1

fðx;yÞdðs�xcosa�ysinaÞdxdy
a[[0;p]jsj,R

ð1Þ

where s is the perpendicular distance of a line from the origin
and a is the angle formed by the distance vector. The point

fðx;yÞ in the brain image corresponds to the sine curve in the
Radon domain. For a 2-D functionfðx;yÞ, the 1-D Fourier trans-
forms of the Radon transform along s are the 1-D radial
samples of the 2-D Fourier transform of fðx;yÞ at the corre-
sponding angles. On the projection image [Rf]ða;sÞ, that is, the
sinogram, the two, local minima correspond to the location of
the skull on both sides as the bone has a low signal on the MR
image.

After the Radon transform, the MR image is transformed
from the image domain to the Radon domain. Figure 2 shows
the MR image and the corresponding sinogram in the Radon
domain. On the sinogram image, the two, curved bands with
low signal intensities on the top and bottom sides, correspond
to the skull because it has relatively low signal intensities seen
on the T1-weighted MR image.

Noise robustness
Radon transform is integration of signals along a line. When an
MR image is added with white noise of zero mean, Radon
transform of noises along the line will cancel each other. Radon
transform can improve the signal-to-noise ratio (SNR) in the
Radon domain. The improvement is demonstrated by the fol-
lowing brain model (figure 3). To simplify, the shape of the
brain can be modeled as a circular area. As shown in the appen-

dix, SNRRadonis increased by a factor of
16a
3p

.

Figure 4 illustrates the profiles from the original MR images
and the corresponding sinograms. By adding 8% and 16% noise
to the original MR images, the profiles become noisy and many
details are not detectable. However, the profiles in the

Figure 1 The schematic diagram of Radon transformation. The
integration is along the line of response (LOR). Access the article online
to view this figure in colour.

Figure 2 A T1-weighted MR image (A) and its corresponding
sinogram (B).
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corresponding sinograms are relatively smooth. Before Radon
transform, the SNRs are 28.2 dB and 14.4 dB for MR images
with 8% and 16% added noise, respectively. After Radon trans-
form, the SNRs are 69.5 dB and 55.9 dB for the sinogram data,
respectively. Note that a rotation of the input image corresponds
to the translation in the Radon domain which can be more suit-
able for segmentation.53

Multiscale space from bilateral filtering
Images in the multiscale space represent a series of images with
different levels of spatial resolution. In the coarse scale, general
information is maintained in the images while the images in the
fine scale have more local tissue information. Bilateral filtering
can introduce a partial edge detection step into the filtering
process in order to simultaneously encourage intra-region
smoothing and preserve the inter-region edge.

Bilateral filtering
Bilateral filtering is a non-linear filtering technique introduced
by Tomasi.54 This filter is a weighted average of the local neigh-
borhood samples in which the weights are computed-based on
the temporal (or spatial in the case of images) and radiometric
distances between the center sample and the neighboring
samples. This filter smoothes images while preserving image

edges by means of a non-linear combination of nearby image
values. Bilateral filtering can be described as follows:

hðxÞ ¼ l�1ðxÞ
ð1

�1

ð1

�1
IðjÞWssðj� xÞWsrðIðjÞ � IðxÞÞdj ð2Þ

with normalization that ensures that the weights for all the
pixels add up to one.

lðxÞ ¼
ð1

�1

ð1

�1
Wssðj� xÞWsrðIðjÞ � IðxÞÞdj ð3Þ

where IðxÞ and hðxÞdenote input images and output images,
respectively. We define that Wss is the spatial function and Wsr

is the range function. Wss measures the geometric closeness
between the neighborhood center x and a nearby point j and
Wsr measures the photometric similarity between the pixel at
the neighborhood centerx and that of a nearby point j. Thus,
the spatial function Wss operates in the domain of I, while the
range function Wsr operates in the range of the image function I.
The bilateral filter replaces the pixel value at x with an average
of similar and nearby pixel values. In smooth regions, pixel
values in a small neighborhood are similar to each other, and
the bilateral filter acts essentially as a standard domain filter that
averages away the small, weakly correlated differences between
pixel values caused by noise.55

Gaussian kernel
Many kernels can be used in bilateral filtering. A simple and
important case of bilateral filtering is shift-invariant Gaussian fil-
tering in which both the spatial function, Wss and the range
function, Wsr are Gaussian functions of the Euclidean distance
between their arguments. More specifically, Wss is described as:

Wssðj� xÞ ¼ e
�
1
2

d2s =s
2
s

h i
ð4Þ

where ds ¼ j� xk k is the Euclidean distance. The range func-
tion, Wsr is similar to Wss :

Wsrðj� xÞ ¼ e
�
1
2

d2r =s
2
r

h i
ð5Þ

Figure 3 Brain ellipse model and the calculation scheme in the
Radon domain. Access the article online to view this figure in colour.

Figure 4 Comparison of profiles. (A) The profiles between the original and the noised MR images. (B) The profiles of the corresponding sinogram.
Access the article online to view this figure in colour.
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where dr ¼ jIðjÞ � IðxÞj is a measure of distance in the intensity
space. In the scalar case, this may be simply the absolute differ-
ence of pixels. Both the spatial and the range filters are
shift-invariant. The Gaussian range filter is insensitive to the
overall additive changes of image intensity.

Multiscale bilateral decomposition
For an input discrete image, I, the goal of the multiscale bilateral
decomposition56–58 is used to first build a series of filtered
images, Ii, that preserve the strongest edges in I while smoothing
small changes in intensity. Let the original image be the 0th
scale (i=0), that is, set I0¼ I. By iteratively applying the bilateral
filter as:

Iiþ1
n ¼ 1

l

X
k[V

Wss;iðkÞ �Wsr;iðIinþk � IinÞ � Iinþk with

l ¼
X
k[V

Wss;iðkÞ �Wsr;iðIinþk � IinÞ
ð6Þ

where n is a pixel coordinate, WsðxÞ ¼ expð�x2=s2Þ, ss;i and
sr;i are the widths of the spatial and range Gaussian functions,
respectively, and kis an offset relative to n that runs across the
support of the spatial Gaussian function. The repeated convolu-
tion by Wss ;i increases the spatial smoothing in each scale i. In
the finest scale, set the spatial kernel as ss;i ¼ 2i�1ss ði . 0Þ. As
the bilateral filter is non-linear, the filtered image Ii is not identi-
cal to the one obtained by bilaterally filtering the original
image, I, with a spatial kernel of cumulative width.

The range Gaussian Wsr;i is an edge-stopping function. If an
edge is strong enough to survive after several iterations of the
bilateral decomposition, it should be preserved by setting
sr;i ¼ 2i�1sr. Increasing the width of the range Gaussian func-
tion by a factor of 2 in every scale increases the chance that an
unwanted edge that survives at previous iterations will be
smoothed away in later iterations. The initial width sr is set to
be A=25, where A is the intensity range of the image.

Bilateral filtering smoothes the images as the scale i increases.
The original image is at the level of i=0. As the scale increases,
the images become blurred and contain more general informa-
tion. At the 5th and 6th scales, the images are smoothed and
large edges are preserved. Unlike other multi-resolution techni-
ques where the images are down-sampled along the resolution,
bilateral filtering does not subsample the image Ii because such
down-sampling would blur the edges in Ii. In addition, down-
sampling would prevent the decomposition from becoming a
translational invariant and could thus introduce grid artifacts
when the coarser scales are manipulated.

In order to compare the difference in every scale, the hori-
zontal profiles are computed through every scale. When the
scale increases, small edges are smoothed in the intra-regions
and large edges in the inter-regions are preserved. By controlling
the scale number, the processing will preserve the needed edges
but will smooth the image at the same time.

Gradient filtering and multiscale reconstruction
In each scale, images are filtered with two sets of filters, the
kernels of which are shown in figure 5. The two kernels are mir-
rored along the vertical direction. They are applied to the same
image. The upper half of the first filtered image is then com-
bined with the lower half of the second filtered image. This step
generates the images with edges along the vertical direction.
The edge information will be used to detect the edge along the
skull. This step is performed at multiple scales. In figure 6, step

(1) shows the images and their corresponding images after the
processing at different scales.

In the coarsest scale, the images are smoothed and only edges
are preserved. For the two highest scales, a region-growing
method59 is used to obtain a ‘head’ mask, as shown in step (2)
in figure 6. The region is iteratively grown by comparing all
unallocated neighboring pixels to the region. The difference
between a pixel’s intensity value and the region’s mean is used
as a measure of similarity. This process stops when the intensity
difference between region mean and the new pixel becomes
larger than a certain threshold. In step 3, the head mask and the
results from step (1) processing at the third to the (i− 2)th
scales are combined to generate a ‘skull’ mask. In step (4), the
skull mask and the results from step (1) processing in the first
and second scales are used to generate the final sinogram of the
skull. Step (5) is the reconstruction used in order to obtain the
skull in the original MR image. The multiscale processing steps
not only maintain the edge of the skull in the finest scale but
also smooth the image at the coarse levels. The skull segmenta-
tion uses the combination of information from multiple scales
in order to accurately delineate the skull on brain MR images.

Reconstruction
Reconstruction of the reciprocal binary sinogram is performed
in order to obtain the skull on the original MR image. The
reconstruction is described as

fðx,yÞ ¼
ðp
0
Quðx cos uþ y sin uÞdu ð7Þ

where Qu is the ramp-filtered projections. In general, three, dif-
ferent inverse Radon transformation methods are the direct
inverse Radon transform (DIRT), filtered back projection (FBP),
and convolution FBP.60 DIRT is computationally efficient but
can introduce artifacts. FBP based on a linear filtering model
often exhibits degradation when recovering from noisy data.
Spline-convolution FBP (SCFBP) offers better approximation
performance than the conventional lower-degree formulation,
for example, piece-wise constant or piece-wise linear models.61

For SCFBP, the denoised sinogram in the Radon domain is
approximated in the B-spline space, while the resulting image in
the image domain is in the dual-spline space. We used SCFBP to
propagate the segmented sinogram back into the image space
along the projection paths.

Brain MR and CT image data for segmentation evaluation
We examined the segmentation results from pairs of CT and
T1-weighted MRI data obtained from the Vanderbilt
Retrospective Registration Evaluation Dataset.62 These CT and
MR image volumes of the head were acquired preoperatively in
human patients. Each image volume contains 40–45 transverse
slices with 512×512 pixels. The voxel dimensions are approxi-
mately 0.4×0.4×3.0 mm3. The corresponding MR image
volumes were acquired using a magnetization-prepared, rapid

Figure 5 Kernels of the two filters.
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gradient-echo (MP-RAGE) sequence. Each image volume con-
tains 128 coronal slices with 256×256 pixels. The voxel dimen-
sions are approximately 1.0×1.0×1.6 mm3. The CT and MR
images were registered using the registration methods that have
been previously validated.63–68 The skull was segmented from
CT images using a Hounsfield value of approximately 600 as
the threshold and the results served as the gold standard to
evaluate the skull segmentation of the MR images.

Real PET data for attenuation correction
PET images were acquired from a dedicated high-resolution
research tomograph (HRRT) system (Siemens, Knoxville,
Tennessee, USA). This scanner used collimated single-photon
point sources of 137Cs to produce high-quality transmission
data as a consequence of higher count rates resulting from the
decreased detector dead time and improved object penetration
compared to conventional, positron-emitting transmission
sources. The image size is 128×128×207 with a voxel size of
2.4×2.4×1.2 mm3. The reconstructed images are interpolated
and consist of 207 slices with 256×256×207 voxels and with a
voxel size of 1.2×1.2×1.2 mm3. Clinical brain PET scans of
10 patients who were referred to the Division of Nuclear
Medicine and Molecular Imaging of Emory University Hospital
for a study on Alzheimer’s disease using 11C-labeled Pittsburgh
Compound-B, were selected from the database and were used
for the clinical evaluation of the developed, segmentation-based
AC method. Transmission (TX)-based AC is used as the gold
standard to evaluate our segmented MRI-based method.

Qualitative and quantitative evaluation of the differences
between the images processed using both the TX-based and the
segmented MRI-based method were performed at the clinical
volumes of interest (VOIs) (including regional cerebral metabol-
ism). The images reconstructed using both processing methods
were realigned to an anatomically standardized stereotactic tem-
plate using our registration algorithm69 and with a rigid body
transformation for the VOIs. Seventeen VOIs were defined in
different slices of the MRI template and were superimposed on
each scan, thus resulting in a total of 170 VOIs for the
10 patients. The registered PET images were then used for
quantitative analysis of the defined VOIs. The VOIs included
left cerebellum (LCE), left cingulate, left calcarine sulcus, left
frontal lobe, left lateral temporal, left medial temporal (LMT),
left occipital lobe (LOL), left parietal lobe, pons (PON), right
cerebellum (RCE), right cingulate (RCI), right calcarine sulcus,
right frontal lobe, right lateral temporal, right medial temporal
(RMT), right occipital lobe (ROL), and right parietal lobe. The
LMT and RMT regions included the amygdale, hippocampus,
and the entorhinal cortex.

Segmentation evaluation
In order to evaluate the performance of the segmentation
method, the difference between the segmented images and the
ground truth was computed using a variety of quantitative
evaluation methods. The ground truth is established by manual
segmentation in real patient data. We defined six metrics in
order to evaluate the segmentation results. The overlap ratios,

Figure 6 Illustration of the multiscale processing steps. From top to bottom, the scale increases from 1 to i. Based on the sinogram images after
multiscale bilateral decomposition, the algorithm processes the images step by step from step (1) to step (4). Access the article online to view this
figure in colour.
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C1,
50 C2, and C3, and the error ratios, E1, E2, and E3, were

defined as follows.

C1 ¼ S1 > S2
S1 < S2

; C2 ¼ S1 > S2
S1

, C3 ¼ S2
S1 < S2

ð8Þ

and

E1=
S1 < S2 � S1 > S2

S1 < S2
, E2=

S1 < S2 � S1 > S2
S1

;

E3=
S1 < S2 � S1 > S2

S1 > S2

ð9Þ

where S1 is the ground truth, and S2 is the segmented result
using our method. Both S1 and S2 are binary images.

RESULTS
Segmentation experiments were performed using brain phantom
data, simulated MR images from the McGill phantom brain data-
base, human patient MR and CT images from the Vanderbilt
dataset, and real patient MR images. The study was approved by
our Institutional Review Board (IRB) and was compliant with the
Health Insurance Portability and Accountability Act.

Brian phantom results
Figure 7 shows the results from the brain phantom images. In
order to compare the results, noise at the level of 40% or 80% of
the maximum intensity was added to the original brain phantom
images. The proposed method is able to accurately segment the

skull in the simulated brain data. It is also robust to noise at the
level of 80% of the maximum intensity. The difference between
the segmented and the ground truth is minimal, partially due to
the interpolation errors made during reconstruction.

Quantitative evaluation results showed that the segmentation
method is not sensitive to noise. The overlap ratios are greater than
93.3% when the noise level is equal to or less than 50% of the
maximum intensity. When the noise level is increased to 100%, the
overlap ratios are 82.6%±2.1%, thus indicating that the segmenta-
tion method is robust to noisy images. The error ratios are less than
5% when the noise levels are equal to or less than 30%.

MR and CT images from the Vanderbilt Dataset
The different images from the CT- and MRI-based segmentation
show only a minimal difference, which indicates that the MR
segmentation is close to the CT segmentation of the skull.
Quantitative evaluation shows that the lowest overlap ratio, that
is, C1, is 85.2%±2.6%. The highest error ratio, that is, E3, is
18.0%±3.2%. The MRI-based segmentation is therefore close
to the CT-based segmentation of the skull.

AC results on clinical PET data
Figure 8 illustrates the means as well as SDs resulting from the
quantitative analysis for both methods in each of the 17 VOIs,
and averaged across the 10 patients. The relative difference
between the TX-based and the MRI-based AC methods was cal-
culated for the VOIs estimate using the TX-based method as the
reference. The maximum difference between the two methods
is less than 8%.

Figure 7 Segmentation results of brain phantoms at different noise levels. From left to right, simulated brain image, sinogram data, segmented
signogram, reconstructed skull, and different images between the segmented skull and the ground truth. From top to bottom, image without noise,
that with 40% noise, and that with 80% noise.
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DISCUSSION AND CONCLUSION
We developed and evaluated a multiscale skull segmentation
method for MR images. T1-weighted MR images are trans-
formed to the Radon domain in order to detect the skull fea-
tures on the images. In the Radon domain, a bilateral filter is
proposed to simultaneously attenuate noise and to preserve
edge information. Two kernels are used to filter images at differ-
ent scales. The width of the range and spatial Gaussian func-
tions are increased by a factor of 2 as the scale increases. By
processing edge and mask information from the coarse to fine
scales, the skull is extracted in the MR sinogram data. After
reconstruction, the skull is segmented on the original MR
images.

One unique feature of our method is that the algorithm is
robust for MR images with random noises. Our particular con-
tribution is that the segmentation algorithm includes the use of
the Radon transform and bilateral filtering. Radon transform
can improve the signal-to-noise ratio while bilateral filtering sim-
ultaneously keeps the edge information and smoothes noise.
The multiscale decomposition technique makes our segmenta-
tion reliable; it also improves the robustness and speed of the
segmentation method.

As the skull segmentation was performed in the Radon space,
it has advantages over the image space for this application. In
low-intensity regions such as the skull and CSF in T1-weighted
images, the noise level is high, which can affect the segmenta-
tion accuracy of skull when the skull is segmented in the image
domain using intensity-based methods or boundary-based
methods. As the intensities of CSF and skull are similar, it can
be difficult for region-based, boundary-based, or intensity-based
methods to accurately segment the skull. By transferring the
images from the image domain to the Radon domain, our
method improves the SNR and potentially eliminates the effect
of CSF on the skull segmentation.

There is a limitation to our segmentation method when
applying it to MR-based AC. For T1-weighted MR images, the

segmentation method can have difficulty differentiating bone
and air as both have a low MR signal intensity. The accuracy of
bone segmentation can be affected in areas where the sinuses
are located. This is particularly true for transverse slices located
below the eyes. We therefore gave the same attenuation coeffi-
cient of 0.096 for the slices below eyes in our segmentation-
based AC method. We used 17 VOIs to evaluate our
segmentation-based AC results. The maximum difference
between the TX-based AC method and our segmentation-based
AC method is less than 8%. Because the AC map did not
include air, it overestimated (over-corrected) some regions such
as LCE, RCE, LOL, and ROL. For MR images that are acquired
UTE sequences, this issue can be resolved as bone will be shown
on UTE MR images. The segmentation method has been inte-
grated into the quantification tools for combined MR/PETappli-
cations.70 The segmentation method can also be used in other
neuroimaging applications.

As an emerging imaging modality, integrated MR/PET holds
great potential for brain research, especially for multi-parametric
analysis of complex function in neuronal networks.71 An inte-
grated MR/PET system will permit the simultaneous acquisition
of several imaging parameters. Quantitative values from PET of
a large number of biological parameters are complemented by
the high-resolution information provided by MRI to yield com-
plementary information of previously unexpected variability.
The combination of imaging modalities for high sensitivity and
high resolution with the additional advantage of utilizing
dynamic acquisition procedures appears very appealing for a
variety of brain clinical and research applications. Recently, PET
and MRI data have been retrospectively combined for detection
and staging of gliomas as well as for identification of areas with
critical neurofunction in the vicinity of tumors, which is import-
ant for planning surgery. Combined MR/PET has gained a place
in the early diagnosis of dementia and mild cognitive impair-
ment and degenerative disorders, for example, cerebral atrophy
and Huntington chorea. Combined MR/PET is of clinical value

Figure 8 Regional cerebral metabolism estimates are shown for the 17 volumes of interest (VOIs). Means and SDs are calculated across the
10 patients studied. TX, transmission.
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in the detection of epileptic foci accessible for surgery and for the
identification of metabolic activity, transmitter concentration and
enzyme expression in small brain structures. The MR-based
attenuation correction is critical for quantitative MR/PET imaging
that will have various applications in both research and clinical
studies. Multimodality imaging such as PETand MRI can provide
both functional and anatomic information for a variety of research
and clinical applications. By combing radiologic imaging informa-
tion with other health information such as pathology and tissue
genomic information, biomedical imaging informatics has the
potential to advance future personalized medicine.
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APPENDIX
SNR AFTER RADON TRANSFORMATION
Radon transform is integration of signals along a line. When an
MR image is added with white noise of zero mean, Radon
transform of noises along the line will cancel each other. Radon
transform can improve the SNR in the Radon domain. The
improvement is demonstrated by the brain model (figure 3).
The shape of the brain can be modeled as a circular area.

Radon transform sums the intensity values of the pixels along
the line. Assume that fðx; yÞ is a 2-D discrete signal whose

intensity values have a mean of m and variance of s2. Then for
each point along the projection ps, add up ns pixels of fðx; yÞ.
The mean will be described by meanð psÞ ¼ ns � m, and the vari-
ance is described by varðpsÞ ¼ ns � s2. Here,ns ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � s2

p
,

and a is the radius of the circular area in terms of pixels and the
integer s is the projection index which varies from �a to a.

The average of p2s is

Aðp2s Þ ¼
1
2a

Xa
s¼�a

p2s ðA1Þ

Its expected value is defined as Ep ¼ E{Að p2s Þ}. Then

Ep ¼ 1
2a

Xa
s¼�a

E{ p2s } ¼ 1
2a

Xa
s¼�a

[varð psÞ þ ðEðpsÞÞ2]

¼ 1
2a

Xa
s¼�a

ðnss2 þ n2sm
2Þ ðA2Þ

For a large awe can get

Ep � 1
2a

ða
�a

ðnss2 þ n2sm
2Þds ¼ pa

2
s2 þ 8

3
m2a2 ðA3Þ

For the signal s, Esignal � pa
2

s2
s þ

8
3
m2
s a

2. For Gaussian white

noise with zero mean and with a variance of s2
n, Enoise � pa

2
s2
n.

The signal-to-noise ratio SNRRadon in the Radon domain can be
calculated as

SNRRadon ¼ Esignal

Enoise
¼ s2

s

s2
n
þ 16a

3p
� m2

s

s2
n

ðA4Þ

In the original MR image, the signal-to-noise ratio SNRMRI can
be defined as SNRMRI ¼ ðs2

s þ m2
s Þ=s2

n.

SNRRadon ¼ s2
s þ m2

s

s2
n

þ 16a
3p

� 1
� �

� m2
s

s2
n

¼ SNRMRI þ 16a
3p

� 1
� �

� m2
s

s2
n

ðA5Þ

In real MR images � 1, hence
16a
3p

� 1,

SNRRadon � SNRMRI þ 16a
3p

� m2
s

s2
n

ðA6Þ

In high-resolution MR images, we assume m2
5 � s2

5.

SNRMRI ¼ ðs2
s þ m2

s Þ=s2
n � m2

s =s
2
n ðA7Þ

SNRRadon � 1þ 16a
3p

� �
SNRMRI ðA8Þ

Since a � 1, 1þ 16a
3p

� �
� 16a

3p
. Hence, after Radon transform-

ation, SNRRadonis increased by a factor of
16a
3p

.
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