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A robust and accurate center-frequency (CF) estimation (RACE) algorithm for improving the performance
of the local sine-wave modeling (SinMod) method, which is a good motion estimation method for tagged
cardiac magnetic resonance (MR) images, is proposed in this study. The RACE algorithm can automatically,
effectively and efficiently produce a very appropriate CF estimate for the SinMod method, under the
circumstance that the specified tagging parameters are unknown, on account of the following two key
techniques: (1) the well-known mean-shift algorithm, which can provide accurate and rapid CF
estimation; and (2) an original two-direction-combination strategy, which can further enhance the
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SinMod accuracy and robustness of CF estimation. Some other available CF estimation algorithms are brought out
Center-frequency for comparison. Several validation approaches that can work on the real data without ground truths are
Mean-shift specially designed. Experimental results on human body in vivo cardiac data demonstrate the significance

Two-direction-combination of accurate CF estimation for SinMod, and validate the effectiveness of RACE in facilitating the motion

estimation performance of SinMod.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Compared with ultrasound and X-ray computerized tomography,
magnetic resonance imaging (MRI) [1] has the advantage of excellent
soft tissue contrast. With MR, structures and functions of tissues can
be evaluated [2]. However, in MR], tracking motion of moving tissues
is quite difficult. The MRI tagging (MRIT) technique [3,4] was
developed to address this problem. MRIT produces distinguishable
labels (the so-called tags, generally presented as regular patterns)
and tags themregularly into the interested tissue. The tags then move
synchronously with the tissue particles to which they attach, making
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the motion of any particle be capable of being tracked. With the
tracked motion, modeling, understanding, quantifying and further
analyses of the tissue all become achievable [5].

The tagged cardiac magnetic resonance (TCMR) image has
demonstrated its significant role in clinical diagnosis and treatment
of the in vivo heart by offering sufficient information of cardiac
motion [6]. So far, plenty of useful methods have been proposed for
estimating/tracking motion from TCMR images. Some of them first
detect and track the distinct tag features such as tag lines and tag
intersections, and then interpolate the local myocardial motion at
any pixel location. Some others directly obtain the dense (mostly at
the pixel level) motion displacement field (MDF), which describes
the local motion between two TCMR images at the specified
locations [2,7]. Methods of the latter category are preferred since
they usually run faster and achieve higher motion estimation
accuracy. Among these methods, the harmonic-phase analysis
(HARP) method [8-14] and the local sine-wave modeling (SinMod)
method [15-19] are regarded as the two most outstanding ones.

The kernel principle of the HARP method is that, for each
myocardial particle, the phase related to a tag-direction, which
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describes the relative position relation between that particle and its
adjacent tags along that tag-direction, remains unchanged no matter to
where the particle moves. For two-dimensional (2-D) TCMR images
tagged in two crossed in-plane directions, each particle has two such
phases. In this context, HARP performs by extracting two phase maps
from each image, and searching for the pairs of two positions from two
sequential images, respectively, where the two positions should satisfy
the following two conditions: (1) their phases are correspondingly
equal; and (2) they are spatially close to each other. Once two such
positions are found, they are considered to match to the same
myocardial particle. Thus, the motion of that particle between the two
images can be accordingly calculated. Due to its full automaticity, high
estimation accuracy and fast processing speed, HARP has become a
state-of-the-art motion estimation method for TCMR images.

The SinMod method was developed based on HARP. The
difference is that SinMod concentrates on the image pixel rather than
the material particle. In the local environment of a pixel, SinMod models
the intensity distribution as the summation of two moving local sine
wave-fronts (in the case of 2-D TCMR images with two tag-directions),
which associates the local motion along a specific in-plane direction at
that pixel with the frequency and phase-shift of the local sine-wave
propagating along that direction (the so-called wave-direction, which
is perpendicular to the tag-direction it corresponds to). Following this
thought, SinMod develops a particular frequency analysis approach to
work out the local frequencies and local phase-shifts for all pixels, and
makes use of them to generate a dense, pixel-level MDF estimate.
According to Arts et al. [15], the experimental results on both simulated
and real TCMR data demonstrate that SinMod runs as fast as HARP, and
performs better with respect to accuracy of displacement detection,
noise reduction, and avoidance of artifacts. In general, SinMod is
believed to have a better comprehensive performance as compared
with HARP.

In this paper, we focus on an important issue: seeking an effective
approach to accurately estimate the center-frequency (CF), which
plays a significant role in the SinMod method for constructing the
essential frequency-domain band-pass filters and calculating the
local frequencies. We present the concept of accurate CF estimation
because as we notice, the motion estimation accuracy of SinMod is
fairly dependent on the CF selection. A better selection of the CF
could yield a more accurate motion estimate; on the contrary, a poor
selection might result in large local estimation errors. However, to
the best of our knowledge, we have not discovered any specific CF
selection/estimation approach in related works of SinMod yet. The
original study [15] only provided a general idea for how to determine
the CF but without an unambiguous algorithm; the other works
using SinMod [16-19] were usually concerned about the application
and comparison, but not the detailed implementation.

As a simple solution, the CF can be selected artificially. However,
this way surely breaks the automaticity of SinMod, and moreover, it
can hardly guarantee the selection accuracy of CF. In fact, based on
the principle of the SinMod method, as long as the tagging
parameters including the initial tag spacings and tag-direction
angles set by the applied MRIT approach are all known, the ground
truth of CF can be immediately computed. But it is more often the
case that we only have the image data itself. To accurately select the
CF under the circumstance that those mentioned parameters are
unknown, we specifically propose the robust and accurate CF
estimation (RACE) algorithm, which is mainly based on the mean-
shift algorithm [20,21] and a two-direction-combination strategy.
The mean-shift algorithm offers automatic, accurate and fast CF
estimation, and the additional two-direction-combination strategy
makes the CF estimation be further more accurate and robust. As a
positive result, the motion estimation performance of SinMod would
be promoted by optimizing it with RACE, and the correct assessment
of cardiac function based on MRIT could be accordingly advanced.

2. Background
2.1. A general review of SinMod

The SinMod method proposed by Arts et al. [15] was designed for
mapping displacement and deformation of the heart from 2-D TCMR
images. As mentioned above, its main idea is to model the intensity ata
pixel as the summation of two moving local sine wave-fronts. In this
way, the local myocardial motion at each pixel is decomposed into two
components, each one of which is along a wave-direction, and can be
calculated from the frequency and phase-shift of the corresponding
local sine-wave. The motion estimation is then converted to obtaining
the local frequency and local phase-shift at each pixel.

Generally, to achieve the goal, SinMod works by extracting the
relevant frequencies around a fundamental peak in the frequency
domain, which is associated with a wave-direction, with two specifically
designed band-pass filters, and generating the local frequency and local
phase-shift maps with some calculations. As a consequence, the pixel-
level MDF along that associated wave-direction can be derived. To
estimate the overall motion, the same processing is repeated for another
wave-direction, and the two resulting MDFs are added using the vector
summation principle so as to form the final MDF, which consists of
vectors that indicate the local motion displacements from one TCMR
image to the other at corresponding pixel locations.

Specifically, for each wave-direction, the CF is first determined.
According to Arts et al. [15], the CF refers to the spatial frequency of tags
along the corresponding tag-direction, and is supposed to locate at a
fundamental peak in the frequency spectrum of the TCMR image. For
ease of expression, assuming that the CF has the location at frequency-
domain coordinates (®q, @), we denote it by a 2-D vector ®; = (g,
) (accordingly called the wave vector in Ref. [15]) with the amplitude
oc = | = /o0& + a)gy, where [||| denotes the norm operator. Using
this CF, a basic band-pass filter by is built by Eq. (1) and is tuned into a
low-frequency filter byas and a high-frequency filter by by Eq. (2),
where (o), ;) denote the rotated coordinates that are converted from
the original coordinates denoted by (w,, ), and i denotes the imaginary
unit.
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With the two filters bpas and bygyy, four filtered images Inqsr, Infst,
I and I with complex intensities are derived from the two
selected TCMR images. A low-frequency power image Py, a high-
frequency power image Pyr and a cross-power image Pcc are then
generated by Eq. (3). Finally, at a spatial location (p, q), the local
frequency O, (p,q), the local phase-shift d)ﬁ (p, qland the aimed local
myocardial motion displacement uﬁ(p, q) along p wave-direction are
orderly calculated by Eq. (4), where arg denotes the argument operator.

Py = ’Ibﬂ_fl ‘2 + ‘Ibﬂfz)z
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Pys(p,q)
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The overall flowchart of the SinMod method is illustrated in Fig. 1,
where the stage of CF estimation is specifically labeled. Due to its
superior performance over HARP, SinMod has been studied and
applied in several researches [16-19]. In Ref. [16], it is validated that
automatic estimation of myocardial rotation and transmural shear
can be performed well by tracking the TCMR image sequence using
SinMod. In Refs. [17,18], displacements of the artificially added dense
virtual tag intersections are estimated by SinMod and are then
interpolated with the multilevel b-splines (MBS) algorithm [22].
Motion estimation in this way is continuous and smooth because of
MBS, and is also fast and accurate due to SinMod. Besides, Ref. [18]
also indicates that SinMod performs better than HARP in most cases

with respect to a distance metric. In Ref. [19], SinMod is extended to
the three-dimensional (3-D) case. The 3-D SinMod method still
works well on the artificial data added with Gaussian noise.

2.2. The CF estimation problem in SinMod

From Egs. (1) and (2), it is obviously seen that the CF is always
required for calculation, as in the form of either the amplitude . or the
coordinates (e, (). As a consequence, the motion estimation result of
SinMod is heavily determined by the actual selection of CF. Nevertheless,
we have already found that different CF selections would accordingly
cause different errors in motion estimation, and sometimes the
differences can hardly be neglected. Unfortunately, as previously
mentioned, none of the original study of the SinMod method or the
ones related to it clearly presented a detailed and automatic
algorithm for CF estimation so far as we known. In order to
reduce the motion estimation error of SinMod, an algorithm that
can effectively and efficiently solve the CF estimation problem is
much needed.
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Fig. 1. The flowchart of the SinMod method. FT, BF and FT~! denote Fourier transform, frequency-domain band-pass filtering and inverse Fourier transform, respectively.
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The CF estimation problem can be formally described as: given a
2-D TCMR image sequence tagged in two tag-directions, a CF
estimation algorithm is required, which can always provide an
appropriate CF for the SinMod method, in order to make the cardiac
motion estimation of that sequence using SinMod be as accurate as
possible. According to the priori knowledge that whether the
specified tagging parameters of the applied MRIT approach are
known or not, the problem is dividedly analyzed in the following
two cases.

2.2.1. With known tagging parameters

As illustrated in Fig. 2, in this case, the four tagging parameters
including the initial tag spacings d; and d,, and the initial tag-direction
angles 6 and 6,, are all given besides the TCMR sequence which is tagged
in the two tag-directions t; and t,. According to the SinMod method,
at a spatial location (p, q), the same two wave-directions wy and
w, are derived from t; and t;, respectively, using the perpen-
dicularity relation. And for each w;, (i = 1, 2), the ground truth
of CF is accordingly located at either one of the two fundamental
peaks f;; and fi, which both correspond to w; and are perfectly
centrosymmetric about the frequency-domain origin o. As a
result, there are totally four candidate CFs @, (i, j = 1, 2) that
can be computed by Eq. (5), where row and col denote the row
and column widths of each TCMR image, respectively.

1 .
O = (wcxil ’ wcyil) = d. (COI SlHGi, —row COS@i),
1 .
O = (wcxiz,wcy,z) = —(—col sin6;, row cosb;).

—
9]
=

Due to the imaging protocols of the applied MRIT approach, such
as the most common one, the spatial modulation of magnetization
(SPAMM) [23,24], we should have d, = d; and ¢, L t; (i.e., 6, =
0, £ m/2). Besides, row and col are also the same unless for special
purpose. All these relations simplify Eq. (5) to Eq. (6), which
indicates that the four candidate CFs are completely rotational
symmetric about o with an interval angle of 90°.

Oy = %(Sinep — cosb,),
@y = (= sindy, cosd;),
{ (6)
row .
® = d—(c0501, sinf, ),
Oy = — rg—]w(cosﬂl, sinf, ).

The above solution actually provides a way to compute the
ground truth of CF. With this solution, as long as the parameters d;,
d», 61 and 6, are known, the CF can be estimated without error.

2.2.2. Without known tagging parameters

In this case, we only have the TCMR image sequence. A solution
for the CF estimation problem seems theoretically feasible: estimat-
ing the four tagging parameters from the sequence beforehand to
make Eqs. (5) and (6) be still available. However, the parameter
estimation work is quite complicated and may not be worthy of
doing with respect to its cost. In fact, we have tried some frequency
estimation methods [25-27] which have good performance on one-
dimensional signals, but they all failed in the parameter estimation
probably because of the mutual interference between the two tag-
directions. Hence, an effective way to solve the CF estimation
problem without known tagging parameters is very necessary.
Fortunately, Arts et al. [15] have implied three significant criterions
that are all instructive and meaningful.

(1) Criterion 1: CF estimation for the first wave-direction.

Here the “first” and “second” are used to distinguish the two
wave-directions for the 2-D case: the first wave-direction is
defined as perpendicular to the tag-direction, along which
the tags have greater powers (measured in the frequency
domain) than the tags along the other tag-direction. And so
to define the second wave-direction. For the first wave-
direction, Ref. [15] suggests that the CF (called the first CF to
differentiate) is chosen “around the spatial frequency of the
tags” along the corresponding tag-direction. As a result, the
first CF is determined by “localization of regions of
maximum power in the frequency domain”. Due to the
strong periodicity of tags, this criterion is well founded, but
note that it just gives a general thought rather than a
specific solution.

Criterion 2: CF estimation for the second wave-direction.

For the second wave-direction, it is also introduced in Ref. [15]
that the CF (called the second CF accordingly) is chosen
“perpendicular to the first one with the same w, value.” In
other words, the second CF is the rotated version of the first
one around the frequency-domain origin with a rotation angle
of 90°, where either clockwise or anticlockwise rotation is fine
since both ways lead to the same result. Apparently, this
criterion is theoretically logical according to Eq. (6). Although
the presented tag spacings and tag-direction angles in the real
TCMR image may be already changed due to the tag distortion
and attenuation, the relation between the ground truths of
two CFs would not be affected.

(2

—

f}: > Wy

b /u Wy

3
[
S
A\ 4

Fig. 2. The four tagging parameters d, d, 64, 6, in the spatial domain and the four candidate CFs @, (i,j = 1, 2) in the frequency domain. Left: a simulated image with tags along
the two tag-directions t; and t,. Middle: the tags along each tag-direction. Right: the corresponding Fourier frequency spectrum. (w,, ®,) and o denote the frequency-domain

coordinates and origin (shifted to the spectrum center), respectively.
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(3) Criterion 3: CF estimation for the whole sequence.

For the whole time-ordered TCMR sequence, it is not declared
but could be speculated from Ref. [15] that, both CFs are
estimated once from the first frame of the sequence, and are
then shared with all the other frames. This criterion is also
reasonable. Based on the principle of MRIT, among all the
frames throughout a whole cardiac cycle, tags in the first
frame should be distorted and attenuated the least. Conse-
quently, each of the two CFs estimated from the first frame
should be more approximate to the corresponding ground
truth than the one estimated from any other frame. Moreover,
as a matter of fact, CF estimation of the latter frames following
Criterions 1-2 directly is very likely to fail, only if the distorted
and attenuated tags are too weak to form obvious peaks in the
frequency domain.

Acquiescently, a qualified CF estimation algorithm for the
SinMod method should fully follow Criterions 1-3.

3. Methods
3.1. Some available CF estimation algorithms

Among Criterions 1-3, it is obvious that Criterion 1 is the
determinant one for designing an eligible CF estimation algorithm,
while Criterions 2-3 can be naturally followed. Hence, the key step of
CF estimation is to effectively estimate the first CF from the first
frame of the sequence. Actually, the following two algorithms can be
logically put forward according to Criterion 1.

3.1.1. The MAX algorithm

The MAX algorithm may be the simplest algorithm that can fulfill
the estimation of the first CF. In MAX, the frequency with the
maximum power in the frequency domain, which accordingly locates
at the brightest pixel in the Fourier power spectrum image, is taken as
the first CF. Note that the direct current (DC) component of the power
spectrum image should be excluded during the maximum seeking
procedure in order to avoid mistake.

Apparently, the MAX algorithm has an extreme processing speed,
but at the price that only integer coordinates can be obtained for the
first CF. However, according to Egs. (5) and (6), the ground truth of
the first CF is supposed to have float coordinates. Therefore, the CF
estimation accuracy of MAX is rough, which would cause an
uncertain influence on the final motion estimation result.

3.1.2. The TRV algorithm

The TRV algorithm can be regarded as a major revision of MAX,
and it is also more in line with Criterion 1. In TRV, a candidate region
meaning to include all possible CF locations is first determined
around the output of the MAX algorithm. After that, a moving fixed-
size window is placed on the power spectrum image, each time with
its center located at a different place within the candidate region. For
every traveling position of that moving window, the powers of all
frequencies fallen into it are added up using a weight function (can
be chosen as Gaussian), and the result is assigned to the current
window center. Finally, the center with the maximum power
summation is taken as the location of the first CF.

The obvious advantage of TRV over MAX is that a CF estimate
with float coordinates can be received, as long as the coordinates of
chosen window centers within the candidate region are not limited
to be integer, which can be easily carried out by setting the traveling
step of the window as a small decimal less than one pixel. As a
consequence, the CF estimation accuracy of TRV is absolutely higher
than MAX.

However, TRV is much more complicated than MAX. Let the
radius of the candidate region be r,q, the radius of the moving

window be r,,,4 and the traveling step be 1/r, the time complexity
of TRV will be O(row - col + 12,qranare). In contrast, that of MAX is
only O(row - col). Even worse, since the precision of TRV which
partly determines the CF estimation accuracy is completely con-
trolled by r.., higher accuracy could be acquired by enlarging ryy.
Consequently, that would result in a much higher time complexity.
Hence, there is a heavy contradiction between the high estimation
accuracy and low time cost in TRV. Based on this reason, the TRV
algorithm is also not recommended, although it seems very logical.

3.2. The RACE algorithm

We propose the RACE algorithm in this study aiming to solve the
CF estimation problem in an automatic, accurate and fast way
without known tagging parameters mentioned above. As previously
introduced, the algorithm primarily utilizes the mean-shift algo-
rithm and a two-direction-combination strategy. To be clear, we first
analyze in theory that why both of the two techniques are applied for
CF estimation, and then describe the detailed implementation of the
RACE algorithm.

3.2.1. Theoretical analysis

(1) Reason for applying the mean-shift algorithm.

The mean-shift algorithm proposed by Fukunaga and Hoste-
tler [20] is a well-known mode seeking algorithm that has
already been applied in many fields, including computer
vision and image processing [21]. Given a set of discrete data
sampled from a density function and an appropriate starting
point, mean-shift can automatically locate the maximum
density of that function with both high accuracy and fast
speed by means of an iteration procedure.

With respect to the CF estimation problem, we find that the
mean-shift algorithm is very suitable. First, the power
spectrum image can absolutely be taken as a 2-D discrete
density function, which shows the power magnitude of each
frequency as the number of coincided data points. Second,
according to Criterion 1, the maximum density of the local
region around a fundamental frequency peak is highly
accordant with the ground truth of the corresponding CF.
Furthermore, the high accuracy and fast speed which mean-
shift can concurrently guarantee are both in great demand.
Reason for applying the two-direction-combination strategy.
According to Criterion 3, for the whole sequence, the two CFs
are estimated from the first frame. Since in the first frame, the
tags are unavoidably distorted and attenuated to a minor
extent; on the other hand, the heterogeneity of underlying
tissue intensities and various noises also disturb the tag
periodicity. As a consequence, it is likely that the estimate of
the first CF would be already deviated from the ground truth.
With a direct application of Criterion 2, the deviation would
still remain between the estimate of the second CF and its
corresponding ground truth, as illustrated in Fig. 3A.

—
N
—

The essential cause of the above problem is that, Criterion 2 only
emphasizes the constraint relation between the two CFs, but
neglects the independent acquisition feasibility of the second CF. In
fact, the second CF can also be estimated in the same way as the first
one. In this fashion, the deviation between each CF estimate and its
ground truth is generally different from the other deviation (see
Fig. 3A). Or further, the two deviations may be able to be mutually
neutralized to a certain extent, since distortion and attenuation of
tags along one tag-direction is partially independent from the other.

Following the above inspiration, we technically develop the two-
direction-combination strategy, the main idea of which is to combine
the two wave-directions together for a conjoined estimation. With
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Fig. 3. The role of the two-direction-combination strategy. A. CF estimation directly following Criterion 2/independent CF estimation. B. Conjoined CF estimation using the strategy.

this strategy, two benefits could be gained. First of all, it is
guaranteed that the estimation error of either CF will at least not
exceed the larger error of the two CFs that are independently
estimated. Theoretically, there is a 50% probability that the conjoined
estimation would achieve the least error. Second, due to the underlying
tissue intensities and noises, the powers of frequencies within the
mean-shift region are affected in different degrees. According to high
similarity of tags and poor similarity of other influential factors, the
conjoined approach is supposed to enhance the powers of those
frequencies close to the ground truth of CF, and meanwhile suppress the
affection caused by most irrelevant factors. In conclusion, it is very
logical and convincible that this strategy can effectively improve the
accuracy (see Fig. 3B) and robustness of CF estimation.

3.2.2. Implementation
In the current implementation, the proposed RACE algorithm
primarily includes the following five key steps.

(1) Normalize all frames of the sequence.

First of all, every frame of the TCMR sequence is normalized in
the same way: mean to 0 and root mean square (RMS) to 1, as
well as in Ref. [15]. With this preprocessing, some global
intensity variations happening to the sequence can be
generally corrected. More importantly, the normalization
can totally eliminate the DC component of the Fourier
power spectrum image, which greatly helps in correctly
locating the frequency with the maximum power as the MAX
algorithm does.

Generate the revised power spectrum image.

Specifically, the two-direction-combination strategy is carried
out by replacing the Fourier power spectrum image with a
revised one in the first place. To effectively fulfill the strategy,
we define the revised power spectrum image as the
summation of the original one and its rotation around the
frequency-domain origin with an angle of 90°. In this way, the
resulting image is rotational symmetric around its center, and
each wave-direction can be taken for the estimation of the first CF.
Initialize the mean-shift region.

We set up the mean-shift region with a circular envelope for
perfect symmetry, a shifting shape-center determined by an
initial position and the mean-shift iteration procedure, and a
varying radius which is kept to be half of the distance between

(2

~—

(3

—

(5

—

—

the shape-center and the frequency-domain origin for exclud-
ing irrelevant information. The only one parameter to be
required is the initial shape-center. Fortunately, we can directly
set it to locate at the frequency with the maximum power, just
like the way MAX performs. Thus, the RACE algorithm can hold
its automaticity and will not lose the correctness.

Compute the mass-center.

Following the principle of the basic mean-shift algorithm, we
compute the mass-center ®me = (Omexvr Omey) by Eq. (7),
where R;; denotes the mean-shift region, @y = (Wsex, Wscy)
denotes the shape-center of R,;s, 'ns denotes the radius of Ry,
o denotes a frequency in Ry, Previsea denotes the revised
power spectrum image, and Kop - gaussian denotes the kernel
function currently chosen as the 2-D Gaussian kernel [28]. By
keeping replacing ®;. with ®,,,, Eq. (7) is repeatedly
performed until the two centers completely coincide.

Z KZD—Gaussian ((D - msc)Prevised ((J)) o

— mERI“S
mc = i
Z KZD»Caussian (m_msc)Prevised (0))
o @)
[ls|l
Rms = {mle_wscH Srms}v Tns = %7
1 _le? r
<2D—Gaussiﬂn((‘°) = me 202 0 = %

Produce the two CF estimates.

Once the iteration of Eq. (7) terminates, the final ®,,,. is taken as the
first CF estimate ®est; = (West1x0 West1y), and the second CF estimate
W, is computed from ey, using Eq. (8), as directly following
Criterion 2.

0 +1
gy = Wegr (:Fl 0 ) = (q:westlyv iwestlx) (8)

The flowchart of the RACE algorithm is illustrated in Fig. 4, where
the two stages that utilize the mean-shift algorithm and the two-
direction-combination strategy, respectively, are specifically la-
beled. As can be proved, the time complexity of RACE is less than O
(row - col + Nyie(max(rms))?), where n,,; denotes the maximum
iteration. According to abundant experiments, nm; seldom
surpasses 5 times. Obviously, FACE runs much faster than TRV.
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4. Experiments
4.1. Materials

Our TCMR data is collected from a cooperative hospital. All data
was acquired on a 1.5 T GE MR scanner (Signa HDxt, GE Healthcare,
Milwaukee, Wisconsin, USA). In this study, two groups of human
in vivo TCMR images with high contrast are specifically chosen for
experiments. The first image group consists of 3 sequences
(numbered from 1 to 3) corresponding to three sequential cardiac
slices from a healthy volunteer, while the second image group
consists of 4 sequences (numbered from 4 to 7) corresponding to
four sequential cardiac slices from a patient with cardiomyopathy.

For the healthy volunteer, the primary imaging parameters were set
as: repetition time (TR) = 6.7 ms, echo time (TE) = 3.2 ms, field of view
(FOV) = 32 cm x 32 cm, flip angle (FA) = 12°, acquisition matrix =
256 x 160, slice thickness = 8 mm, spacing between slices = 10 mm,

cardiac number of images = 20, rows = 256, columns = 256; for the
patient, the parameters were accordingly set as: TR = 6.6 ms, TE =
3.1 ms, FOV = 36 cm x 36 cm, FA = 12°, acquisition matrix =
256 x 160, slice thickness = 8 mm, spacing between slices = 11 mm,
cardiac number of images = 20, rows =256, columns = 256.

Consequently, each sequence includes 20 frames, which all have
the same size of 256 x 256 pixels and together represent a whole
cardiac cycle. To facilitate studying, each frame is rotated 45°
anticlockwise to make the tags be presented in both horizontal and
vertical directions. To highlight the left ventricle which is taken as
the region of interest, all frames are cut down to a new size of
110 x 110 pixels with the same cutting position. For the purpose of
visualization, the 1st, 6th, 11th, 16th and 20th frames of each of the 7
sequences are shown in Fig. 5.

For the running environment, our experiments are all performed
in the R2014a 64bit version of MATLAB software with the hardware
of 4 x 2.7 GHZ processors and 8 GB RAM.
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Fig. 5. The TCMR data (partly shown) chosen for experiments.

4.2. Comparison methods

In our experiments, the TRV algorithm is abandoned due to its
extraordinary high time cost, and the following three CF estimation
algorithms are specifically chosen for comparison.

(1) The RACE algorithm.

(2) The MAX algorithm.

(3) The MS algorithm, which utilizes the mean-shift algorithm yet
without the two-direction-combination strategy. Note that
the only difference between MS and FACE is the selection of
the power spectrum image.

The performances of above three algorithms are compared in the
aspect of CF estimation result. In addition, each algorithm is
separately integrated into the original SinMod method, yielding
three revised methods that are denoted by SinMod & RACE, SinMod
& MAX and SinMod & MS, respectively. And the performances of
these methods are compared in the aspect of MDF estimation result.

4.3. Validation approaches

To reasonably validate the CF/MDF estimation result of each
algorithm/method, it would be very helpful if the corresponding
ground truth is already known. However, for real in vivo cardiac
data, that requirement can hardly be satisfied. To address this
“validation without ground truths” problem, several categories of
effective solutions have been investigated in past decades, including
(1) manufacturing simulated data with the known ground truths
[29-31], (2) artificially marking out ground truths [32], (3) using

gold-standard methods to generate ground truths [29,31], and (4)
other particular approaches [33]. Nevertheless, these solutions all
have limitations.

As replacements, in this study, we specifically bring out the
following validation approaches, which we consider to be more
impersonal and impartial for evaluation and comparison.

4.3.1. Validation for CF estimation

According to Egs. (5) and (6), for each CF, as long as the
corresponding tag spacing and tag-direction angle are both
unaltered, its ground truth will remain the same. This fact
provides a creative way for the validation of CF estimation
bypassing the necessity of the ground truth: cautiously altering
the TCMR image without changing the tag spacings and tag-
direction angles, and weighing the variance of the multi CF
estimates. Ideally, the variance should perfectly be zero. Regard-
ing the actual situation, although the variance can hardly remain
zero, itis still factual that the smaller the variance, the more robust
the CF estimation would be.

To ensure that the tag spacings and tag-direction angles do not
change notwithstanding the image altering, the following two
approaches are designed.

(1) Adding different levels of noise to the image subject.

(2) Assigning the image subject to be the cutting result of a larger-
sized source image. In this way, the image subject varies with
different cutting positions, which however only causes
translation motion to the tags.


image of Fig.�5

Noise

H. Liu et al. / Magnetic Resonance Imaging 32 (2014) 1139-1155

1147

Image
selection

w=101

=—3p For averaging

Gaussian white

Salt & pepper

Multiplicative
random
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and noise density, respectively.
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Note that to eliminate non-uniqueness, we choose the CF amplitude
for variance measurement, since both of the first and the second CFs
have just the same amplitude.

4.3.2. Validation for MDF estimation

As a matter of fact, the ground truth of MDF between two real
TCMR images is also impossible to be directly acquired, but it is
entirely feasible to create a known ground truth of MDF on condition
that the two image subjects are generated from the same source
image. Based on this consideration, two approaches are specifically
designed for the validation of MDF estimation.

(1) Assigning the second image subject to be a shifted version of
the first one. In this way, the ground truth of MDF between
them is known as the global translation.

(2) The two image subjects are not directly associated, but once
the MDF between them is estimated, the second image is
replaced by one of its shifted versions, and the same motion
estimation is performed again. As a result, the ground truth of
the difference between the two MDFs is known as the global
translation as well.

For accuracy measurement, the mean error and the RMS error are
both calculated. Concretely, in the first approach, let the ground truth
of MDF be Uy, and the estimated MDF be U,, the two errors denoted
bY Emean and &5, respectively, are computed by Eq. (9), where Ry
denotes the statistics region used for excluding the less concerned

image parts that without distinct tags, and (i, j) denotes an image pixel
within Ry In the second approach, let the first and the second
estimated MDFs be U,gs;; and Ueso, respectively, and the ground truth of
the difference between two MDFs be U, the two errors denoted by
Eamean aNd Earms, respectively, are computed by Eq. (10).

D Ut (i, )= Ugry (i, )
e ()R
e Area(Rqyq) 7
9)
.. s a2
D Uesei )= Ugru (i, )|
e - | )R
" Area(Rqy,)
D WUesia (i, )= Ueger (i, ) = U nru (i )
e )R
Amean Area (Rstat) 5
o o 2 (10)
Z ”Uestz(l;.])_uestl(lv])_UAtm(lvf)”
e | )R
o Area(Ryq)

Note that we only create the global translation motion in this
study. The reason we do not test more kinds of motion, such as the
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Table 1
The processing time of each algorithm/method.
MAX (ms) MS (ms) RACE (ms) TRV (s) SinMod (ms)
Step = 1/2 Step = 1/5 Step = 1/10 Step = 1/20 Step = 1/50
Sequence 1 0.73 0.93 1.40 0.051 0.273 1.081 4.356 27.219 7.15
Sequence 2 0.66 0.97 1.51 0.062 0.392 1.532 6.179 38.255 7.30
Sequence 3 0.67 1.01 1.40 0.113 0.533 2122 8.485 53.092 741
Sequence 4 0.68 0.97 143 0.030 0.235 0.739 2.970 18.566 6.74
Sequence 5 0.68 0.91 1.31 0.045 0.323 1.085 4.341 27.064 6.68
Sequence 6 0.65 1.00 141 0.061 0.382 1.523 6.137 38.159 6.95
Sequence 7 0.66 0.87 1.27 0.075 0.307 1.078 4316 27.153 6.52

global rotation and scaling, is to avoid large local motion and the
possible errors caused by essential interpolation.

4.4. Experimental results

4.4.1. CF estimation

In the first experiment, we study the performance of each CF
estimation algorithm by following the first validation approach of CF
estimation. As illustrated in Fig. 6A, the first frame of Sequence 1 is
chosen to generate the TCMR image subject using a square window,
the width of which varies from 101 to 110 pixels in order to
eliminate the dependence of the results to a specific ground truth of
CF. Three common types of noises, including the Gaussian white
noise, the salt & pepper noise and the multiplicative random noise,
each with varying levels, are added into the image subject
separately. Specifically, for the Gaussian white noise and multipli-
cative random noise, their variances both vary from 0.01 to 0.1 with a
step of 0.005; for the salt & pepper noise, its density varies in the
same way. Fig. 6B partly shows the noised images. And for each noise
level and each image width, the image subject is repeatedly noised
10 times in order to suppress the randomness of noise, which totally
yields 100 CF estimates in consideration of the 10 specified image
widths, and the amplitudes of all these estimates are averaged to
generate a statistical result. The relation curves of the average
amplitude of CF estimates vs. the noise level (variance or density) of
the three algorithms in regard to the three different types of noises
are shown in Fig. 7A-C, respectively. And the corresponding logs of
variance of CF amplitudes are calculated and also shown in Fig. 7D. It
can be seen that the mean value of the average CF amplitudes always
differs from one algorithm to another no matter for which hired
noise. Since the corresponding ground truth is unknown, we cannot
tell which algorithm estimates the most accurately. Yet the curves
clearly show that for each noise type, the RACE algorithm always has
the smallest variance of CF amplitudes, while the MAX algorithm
continuously gets the largest one, and the MS algorithm keeps being
close to but never beyond RACE (see Fig. 7D). According to all the
results, we can generally draw the conclusion that in contrast with
the other two algorithms, RACE has the strongest robustness of CF
estimation with respect to noise.

In the second experiment, accordingly, we study the performance
of each algorithm by following the second validation approach of CF

estimation. As illustrated in Fig. 8A, the first frame of Sequence 1 is
still chosen to generate the image subject, only this time using a
fixed-size square window, the location of which shifts diagonally
from the bottom left to the top right of the source image. For the
same purpose, the image width remains no change during a whole
shifting round, but varies from 91 to 100 pixels to create 10
independent shifting rounds for averaging. Likewise, the relation
curves of the average amplitude CF estimates vs. the horizontal/vertical
shifting distance of the three algorithms are shown in Fig. 8B, and the
corresponding logs of variance of CF amplitudes are shown in Fig. 8C.
Once again, the RACE algorithm absolutely gains the smallest variance
of CF estimates. And it is seen that the MAX algorithm has a smaller
variance than MS this time, but note that the fluctuation of CF
amplitudes estimated by MS is presented in a much smoother way
than MAX, which also symbolizes a stronger robustness in some way.
In general, the similar conclusion can be drawn: the RACE algorithm
still has the strongest robustness of CF estimation among the three
algorithms with respect to image translation.

In addition, Table 1 shows the processing times of all involved
algorithms/methods, including MAX, MS, RACE, TRV (with different
settings of the traveling step) and SinMod (with no CF estimation),
performing on the first frame of each sequence using generally
optimized MATLAB codes. From the table, it is seen that the
three comparison algorithms MAX, MS and RACE all have very
low time costs as compared with the main body of SinMod (only
about 1/10 ~ 1/5 times), and they behave quite close to each other.
Although the MAX algorithm always performs the fastest while RACE
the slowest, the differences among them can be almost ignored
(<1 ms). On the contrary, the TRV algorithm shows a much huger
time cost. As the traveling step narrows down from 1/2 to 1/50 pixel,
the cost grows exponentially from about 10 to about 5000 times of
that of SinMod, which is definitely undesirable. Therefore, only from
the perspective of time, the TRV algorithm deserves to be waived,
while the other algorithms are quite optional.

And Table 2 accordingly shows the estimation results of the first
CF of all algorithms on the first frame of each sequence. As can be
seen, the MAX algorithm receives integer coordinates every time,
while the others can all get float ones. Both of the MS and RACE
algorithms are able to achieve very high precision, and their results
are very close but never fully equal to each other. As for the TRV
algorithm, with a large traveling step, its performance degrades to

Table 2
The estimation result of the first CF of each algorithm.
MAX MS RACE TRV
Step = 0.5 Step = 0.2 Step = 0.1 Step = 0.05 Step = 0.02
(10, 0) (9.9743, 0.0640) (9.9403, 0.0913) (10,0) (10.0,0.2) (10.0,0.1) (10.00, 0.05) (10.00, 0.06)
Sequence 2 (11,0) (10.7812, 0.0489) (10.6441, 0.0392) (11,0) (10.7,0.1) (10.8, 0.0) (10.80, 0.05) (10.78, 0.04)
Sequence 3 (12,0 (12.0391, 0.0008) (11.9762, —0.0357) (12,0) (12.0, 0.0) (12.1,0.0) (12.05, 0.00) (12.04, 0.00)
Sequence 4 (9,0) (9.0998, —0.0539) (9.0743, —0.0167) (9,0) (9.1,0.1) (9.1, —0.1) (9.10, —0.10) (9.10, —0.08)
Sequence 5 (10, 0) (9.9349, —0.0191) (9.9126, —0.0429) (10,0) (9.8,0.0) (9.9,0.0) (9.95, 0.00) (9.92, —0.06)
Sequence 6 (11,0) (10.9060, —0.0191) (10.7532, —0.0457) (11,0) (109, —0.1) (109, —0.1) (10.85, —0.00) (10.84, —0.06)
Sequence 7 (10, 0) (9.9700, —0.0152) (9.9511, —0.0509) (10,0) (10, 0.0) (9.9, 0.0) (9.95, 0.00) (9.98, 0.00)
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Fig. 9. The image selection scheme of the third experiment.

linearly and the estimation result tends to converge in an unstable
way. Overall, all the four algorithms can yield similar results for each
sequence. And from these results, it seems intuitively likely that the
MS and RACE algorithms always get closer to the corresponding
ground truths than the other two.

4.4.2. MDF estimation

In the third experiment, we study the performance of each
revised method by following the first validation approach of MDF
estimation. As illustrated in Fig. 9, the first TCMR image subject is
fixed at the top left of the chosen source image, while the second
image subject is sliding from the top left to the bottom right of the
same source image with the maximum horizontal/vertical shifting
distance of 4 pixels. And the green double contours outline the
statistical region. Similar as the second experiment, the image width
varies from 97 to 106 pixels outside a one-time shifting round for
averaging. The relation curves of the average mean/RMS error of
MDF estimation vs. the horizontal and vertical shifting distances of
the three methods on the first frame of Sequence 1 are shown in
Fig. 10A. It is clearly seen that in each shifting case, the SinMod &
RACE method constantly achieves the smallest errors in both aspects,
while the SinMod & MS method has a similar performance and
SinMod & MAX behaves distinctly worse all the time. And as the
shifting distance in either direction becomes larger, both errors tend
to grow in an approximate linear and smooth way for each method.
The results adequately stand for the superiority of the RACE
algorithm in upgrading the motion estimation accuracy of the
SinMod method over the other two algorithms.

Fig. 10B-C additionally shows the motion error fields and part of
their differences in two specific cases for a clearer comparison. As
shown in Fig. 10B, for the case with a smaller shifting distance of
2 pixels in the horizontal direction only, the difference of local
motion errors between the SinMod & RACE method and each of the
other two is not very obvious, but the superiority of the former
method can be confirmed statistically. As shown in Fig. 10C, for
another case with a larger shifting distance of 4 pixels in the vertical
direction only, the corresponding differences become quite distinct
in some local regions (see the two outlined ellipses in Fig. 10C),
which visually indicate the ascendency of the RACE algorithm.

Considering the possible individual difference coming from one
single cardiac slice, Fig. 11A-B further shows the average curves of
the three methods on Sequences 1-3 as corresponding to the
volunteer and Sequences 4-7 as corresponding to the patient.
Similarly, in almost every shifting case, the SinMod & RACE method
wins the smallest errors. Specifically, for the mean error, SinMod &
RACE always performs the best, SinMod & MS takes the second place
with small differences and SinMod & MAX shows the worst
performance with much larger gaps especially for the volunteer.
For the RMS error, differently, all the three methods behave highly
consistent with each other. In spite of that, it is still discernible that
the SinMod & RACE method remains achieving the least errors with
very few exceptions. Taken all together, it can be strongly concluded
that as compared with MS and MAX, RACE can promote the motion
estimation accuracy of the SinMod method to the highest level.

In the fourth experiment, we study the performance of each
revised method by following the second validation approach of MDF
estimation. As illustrated in Fig. 12, for the first MDF estimation,
the first and the second image subjects are cut from the first and the
second frames of the same chosen sequence, respectively, both at the
top right positions; for the second MDF estimation, the first image
stays the same, while the second image is sliding from the top right
to the bottom left of the same source image. The maximum shifting
distance and the variation range of image width are both the same as
in the third experiment. Similarly, the relation curves of the average
mean/RMS of MDF estimation difference vs. the shifting distances in
both directions on Sequences 1-3 and Sequences 4-7 (in the form of
average as well) are shown in Fig. 13A-B, respectively. The results
present a high consistency with those in Fig. 11. Likewise, it can be
also concluded that the RACE algorithm can promote the motion
estimation robustness of the SinMod method to the strongest level as
compared with the other two algorithms.

Table 3 further shows the relative mean/RMS error of each
revised method on each sequence using the results of the third and
fourth experiments. Here the relative error e is computed by Eq. (11),
where dy,, and d,;; denote the horizontal and vertical shifting
distances, respectively, and € denotes the average error of all cases
yielded from the image width variation. It is clearly indicated in
Table 3 that the SinMod & RACE method always obtains the least
errors expect for very few cases, although its advantage over the
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other two may not be very large. The averaged data also listed in the
table gives a more obvious comparison.

Cind = l éind(dhrzv dvrt)
ind — k)
24 0<dy,<4,0<d,, <4 \/d3, +d%,
dpr; + dy #0

ind = mean, rms, Amean, Arms.

Finally, Fig. 14A-E shows the continuous frame-to-frame motion
tracking results of the tags in the first five frames of Sequence 1,

respectively, using the SinMod & RACE method. The display area of
each figure is set as the statistic region of the first frame. The green
lines in each figure denote the tags directly detected from the
underlying frame using the HARP method, while the red lines denote
the tags tracked by SinMod & RACE and deformed by MBS. As shown
in the figures, the two sets of tags are completely overlapping at the
very beginning, and start to split as the frame number increases,
however, in a very slow and local way. Actually, even in Fig. 14E, the
overlap ratio of them is still high, and the local divergences mainly
occur at the places close to the inner and outer contours of the
statistic region. Therefore, the correctness of the RACE algorithm is
proved to be well enough.
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5. Discussion

The HARP method is widely accepted because of its good
performance, ease of implementation, and long history of investiga-
tion and application. As a kind of analogous method with relatively
better performance, the SinMod method deserves better attention
and promotion. In SinMod, a less noticed but still significant part is
the explicit selection/estimation approach of the CF, which plays a
very important role in the whole method. Throughout the related
works of SinMod, we find none of them has expressly focused on this
CF estimation problem. To make the SinMod method be thorough
and more accurate, this study presents the RACE algorithm as a well
solution for estimating the required CF automatically, robustly,
accurately and quickly.

The RACE algorithm is based on the mean-shift algorithm and the
two-direction-combination strategy. With a proper initialization, the
mean-shift algorithm is able to get very close to the ground truth of
CF with both high accuracy and fast speed. Some other algorithms
may be able to achieve similar accuracies (e.g., the TRV algorithm
with a very narrow traveling step), and some others may achieve
even faster speed (e.g., the MAX algorithm), but as far as we known,
the mean-shift algorithm is still optimal since it has the best
comprehensive performance (see all the differences of results

between MS/RACE and MAX). As a key supplementary, the two-
direction-combination strategy is employed to reduce the overall
error caused by using only one wave-direction for CF estimation, or
in other words, to enhance the accuracy and robustness of CF
estimation. Its effectiveness is clearly validated all over all the
experiments (see all the differences of results between RACE and
MS). Furthermore, the strategy barely increases the time cost
(see Table 1).

In the mean-shift algorithm, the initial shape-center, the region
radius and the kernel function all have their own different effects on
the CF estimation result. The initial shape-center directly decides
which of the four candidate CFs (see Fig. 2) to be estimated, but it
does not need to be set very accurately. As long as this parameter is
chosen close to the spatial frequency of tags along one tag-direction,
the mean-shift algorithm can always achieve an accurate CF
estimate. Differently, the region radius should be watchfully set in
a rational range, since smaller radius would bring more iterations
and might possibly make the CF estimate be fallen into an undesired
local minimum, while larger radius could likely result in a totally
wrong estimated location. About the kernel function, it is shown in
our repetitive experiments that with different kernels, the perfor-
mance of the RACE algorithm changes slightly in speed and accuracy
within an acceptable range. In general, the parameter settings of our
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Fig. 13. A. Average mean error of MDF estimation difference vs. shifting distances for Sequences 1-3 and 4-7. B. Average RMS error of MDF estimation difference vs. shifting
distances for Sequences 1-3 and 4-7.
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Table 3
The relative error of each revised method.

Relative mean error (%)

Relative RMS error (%)

SinMod & MAX SinMod & MS SinMod & RACE SinMod & MAX SinMod & MS SinMod & RACE
Sequence 1 0.52 /0.68 0.38/0.55 0.36/[0.47 1.55/1.79 151/1.73 /
Sequence 2 0.31/0.39 0.30/0.36 0.30//[0.35 1.44/1.65 143 /159 1.43 [[1.57]
Sequence 3 0.19/0.35 /030 0.18 /[0.28] 1.54/2.97 1.56 / 2.77 1.53/[2.72]
Sequence 4 0.52 /[0.61] 0.55/ 0.67 [052]/ 0.65 1.51 /[1.80] 1.51/1.82 [1.50]/ 1.81
Sequence 5 0.38 /[0.49 0.40/0.50 [0:38]/ 0.51 137 /[1.64] 136/ 1.66 [1.35]/ 1.66
Sequence 6 0.40/0.49 0.33/0.46 0.30]/[0.41 1.14 /147 1.11/1.46 1.10|/[1.44
Sequence 7 0.61/0.62 0.54/0.51 0.47]/[0.48 145/ 1.62 144 1.59 1.40]/[1.58
Average of 1-3
& 0.34/0.47 0.28 /0.40 0.28]/[0.37 1.51/2.14 150/ 2.03 1.49]/2.00]
(the volunteer)
Average of 4-7
0.48 / 0.55 0.45/ 0.54 0.42]/[0.51 1.37/1.63 1.36/1.63 /

(the patient)

Data before '/' corresponds to the third experiment, while data after '/' corresponds to the fourth experiment. The boxes indicate the smallest error for each case.

current implementation may not be the most optimal, but the
experiments show sufficient and effective results.

In conclusion, all the results in Subsections 4.4.1 and 4.4.2 together
demonstrate that the RACE algorithm is definitely the most outstanding
solution for the CF estimation problem under the circumstance that the
specified tagging parameters are not known, as compared with all the
other algorithms introduced in this paper. No matter on the robustness
of CF estimation, or the accuracy of MDF estimation (also implies the
accuracy of CF estimation), or the robustness of MDF estimation, RACE
consistently achieves the best performance. Even in the aspect of
processing time, RACE still performs very closely to the MAX algorithm
which is supposed to be the fastest. By integrating with the RACE
algorithm, the SinMod method would only have a very small
deceleration, while the earnings are much larger.

6. Conclusions

A novel CF estimation problem for the SinMod method is
studied and solved in this paper. Under the circumstances without
known tagging parameters that can directly yield the ground truth
of CF, three significant criterions which are all instructive in
designing effective CF estimation algorithms are summarized from
the original study of SinMod. Following these criterions, the RACE
algorithm based on the mean-shift algorithm and the creative two-
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direction-combination strategy is proposed to solve the CF
estimation problem. Some other available CF estimation algo-
rithms including MAX, TRV and MS are all provided for compar-
ison. Two groups of human body in vivo TCMR data acquired from a
healthy volunteer and a patient with cardiomyopathy are chosen
for experiments. To address the no ground truth problem for real
data, four validation approaches in total, including two for CF
estimation and two for MDF estimation, are specially designed and
applied to the four experiments, respectively. Several significant
conclusions can be drawn from the experimental results: (1) the CF
estimation problem is truly worth studying, since with different CF
selection, the performance of SinMod alters between good and
bad; (2) the two employed techniques in the proposed
RACE algorithm, including the mean-shift algorithm and the two-
direction-combination strategy, both have obvious and distinctive
roles in facilitating the CF estimation; and (3) among all the valid
CF estimation algorithms that we consider, the RACE algorithm has
the most considerable comprehensive superiorities, as concretely
embodied in high accuracy, strong robustness, and fast processing
as well, of both CF and MDF estimation. With the application of
RACE, people can study and carry out the SinMod method in a more
convenient and effective way, and the follow-up studying and
processing on cardiac motion and deformation analysis could be
benefited to a certain degree.
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Fig. 14. A-E. Continuous tracking results of tags for the first five frames of Sequence 1, respectively.
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