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Abstract. Hyperspectral imaging (HSI) is an emerging imaging modality for medical applications, especially in
disease diagnosis and image-guided surgery. HSI acquires a three-dimensional dataset called hypercube, with
two spatial dimensions and one spectral dimension. Spatially resolved spectral imaging obtained by HSI pro-
vides diagnostic information about the tissue physiology, morphology, and composition. This review paper
presents an overview of the literature on medical hyperspectral imaging technology and its applications.
The aim of the survey is threefold: an introduction for those new to the field, an overview for those working
in the field, and a reference for those searching for literature on a specific application. © The Authors. Published by
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1 Introduction
Hyperspectral imaging (HSI), also called imaging spectrom-
eter,1 originated from remote sensing and has been explored
for various applications by NASA.2 With the advantage of
acquiring two-dimensional images across a wide range of
electromagnetic spectrum, HSI has been applied to numerous
areas, including archaeology and art conservation,3,4 vegetation
and water resource control,5,6 food quality and safety control,7,8

forensic medicine,9,10 crime scene detection,11,12 biomedi-
cine,13,14 etc.

As an emerging imaging modality for medical applications,
HSI offers great potential for noninvasive disease diagnosis and
surgical guidance. Light delivered to biological tissue undergoes
multiple scattering from inhomogeneity of biological structures
and absorption primarily in hemoglobin, melanin, and water
as it propagates through the tissue.15,16 It is assumed that the
absorption, fluorescence, and scattering characteristics of tissue
change during the progression of disease.17 Therefore, the
reflected, fluorescent, and transmitted light from tissue captured
by HSI carries quantitative diagnostic information about tissue
pathology.17–20 In recent years, advances in hyperspectral cam-
eras, image analysis methods, and computational power make it
possible for many exciting applications in the medical field.

In the following, we aim to introduce and explain medical
hyperspectral imaging (MHSI) technology and to give an over-
view of the literature on MHSI hardware, software, and appli-
cations. This survey covers literature from fall 1988 to spring
2013. We start at the basics with the mechanisms of HSI and
its current development status. We then classify MHSI based
on its acquisition mode, spectral range and spatial resolution,
measurement mode, dispersive devices, detector arrays, and
combination with other techniques. Image analysis methods
for MHSI are summarized with an emphasis on preprocessing,

feature extraction and selection, and classification methods.
The section on applications refers to the available literature on
disease diagnosis and surgery guidance. These applications
mainly cover the ultraviolet (UV), visible (VIS), and near-infra-
red (near-IR or NIR) regions. Interested readers can refer to
other review papers for more applications in mid-infrared
(mid-IR or MIR) regions.21,22 Finally, we conclude with a dis-
cussion on the achievements of the past years and some future
challenges.

2 Tissue Optics
The propagation of light within tissue is a significant problem in
medical applications and in the development of diagnostic meth-
ods. Therefore, this section is dedicated to a brief review of the
light tissue interaction mechanisms, optical processes involved
in HSI, and useful diagnostic information provided by HSI.

Light entering biological tissue undergoes multiple scattering
and absorption events as it propagates across the tissue.23

Biological tissues are heterogeneous in composition with spatial
variations in optical properties.24 Scattering occurs where there
is a spatial variation in the refractive index.24 In cellular media,
the important scatters are the subcellular organelles, with their
size running from <100 nm to 6 μm. For example, mitochondria
are the dominant scatterers among the organelles. The structure
of a lipid membrane and lipid folds running inside gives mito-
chondria a high optical contrast to the surrounding cytoplasm
and produces the observed strong scattering effects. The
shape and size of the cells vary among different tissue types
with dimensions of a few microns and larger.24 The scattering
properties of support tissues composed of cells and extracellular
proteins (elastin and collagen, etc.) are caused by the small-scale
inhomogeneities and the large-scale variations in the structures
they form.

The penetration depth of light into biological tissues depends
on how strongly the tissue absorbs light. Most tissues are suffi-
ciently weak absorbers to permit significant light penetration*Address all correspondence to: Baowei Fei, E-mail: bfei@emory.edu
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within the therapeutic window, ranging from 600 to 1300 nm.24

Within the therapeutic window, scattering is over absorption, so
the propagating light becomes diffuse. Tissue absorption is a
function of molecular composition. Molecules absorb photons
when the photons’ energy matches an interval between internal
energy states, and the transition between quantum states obeys
the selection rules for the species. During absorption processing,
transitions between two energy levels of a molecule that are
well defined at specific wavelengths could serve as a spectral
fingerprint of the molecule for diagnostic purposes.24,25 For
example, absorption spectra characterize the concentration
and oxygen saturation of hemoglobin, which reveals two hall-
marks of cancer: angiogenesis and hypermetabolism.16 Tissue
components absorbing light are called chromophores. Some
of the most important chromophores for visible wavelengths
are blood and melanin, of which the absorption coefficient
decreases monotonically with the increasing wavelength. The
primary absorbers for UV wavelengths are protein and amino
acids, while the important absorbing chromophore for IR wave-
lengths is water.26

Light absorbed by tissue constituents is either converted to
heat or radiated in the form of luminescence, including fluores-
cence and phosphorescence.18,24,27 Fluorescence that originates
from endogenous fluorescent chromophores is also called auto-
fluorescence. Incident light, typically in the UV or VIS region,
excites the tissue molecules and induces fluorescence emission.
The majority of the endogenous fluorophores are associated
with the structural matrix of tissue or with various cellular met-
abolic pathways.24,28 The most common fluorophores in the
structural matrix are collagen and elastin, while the predominant
fluorophores involved in cellular metabolism are the nicotin-
amide adenine dinucleotide (NADH), flavin adenine dinucleo-
tide (FAD), and lipopigments.29 These intrinsic fluorophores
exhibit different strengths and cover spectral ranges in the
UV and VIS regions. For example, fluorescence from collagen
or elastin using excitation between 300 and 400 nm shows broad
emission bands between 400 and 600 nm, which can be used to
distinguish various types of tissues, e.g., epithelial and connec-
tive tissue.30 Cells in different disease states often have different
structures or undergo different rates of metabolism, which result
in different fluorescence emission spectra. Therefore, fluores-
cence imaging makes it possible to investigate tissues for diag-
nosis of diseases in real time without administrating exogenous
fluorescent agents.24 Various exogenous fluorophores have also
been created and studied for biological diagnostics using HSI,29

but this review will mainly discuss the intrinsic fluorescence.

Incident light can be directly reflected on the surface of the
tissue or be scattered due to random spatial variations in tissue
density (membranes, nuclei, etc.) and then be remitted to the
tissue surface.27 Light becomes randomized in direction due
to multiple scattering, and this is known as diffuse reflectance,
which provides information about scattering and absorbing
components deep within the tissue.31 The measured reflectance
signal represents light that has sampled a variety of sampl-
ing depths within the tissue and is, therefore, an average
measure of the properties over a certain volume of tissue.31

Knowledge of the origin of the scattering and absorption signals
would facilitate accurate modeling and interpretation of the
reflectance data. The reflectance signal measured from epithelial
tissue is determined by the structural and biochemical properties
of the tissue; therefore, changes in optical properties can be
used to noninvasively probe the tissue microenvironment.31

Alterations in tissue morphology, including hyperplasia, nuclear
crowding, degradation of collagen in the extracellular matrix by
matrix metalloproteinases, and increased nuclear/cytoplasmic
ratio, which are associated with disease progression, can affect
the scattering signals. As diseases progress, hemoglobin absorp-
tion may be affected by angiogenesis and tissue hypoxia, etc.
Therefore, changes in the disease states should lead to corre-
sponding changes in the patterns of light reflected from the
tissue.

Reflectance imaging can detect local changes in scattering
and absorption properties of tissue, and fluorescence imaging
can probe changes in the biochemical composition of tissue
by revealing levels of endogenous fluorophores.32 Multimodal
HSI combining reflectance and fluorescence has been investi-
gated for cancer diagnosis.19,33 Furthermore, the HSI system
can be adapted to other existing techniques, such as microscope
and colposcope, to provide complementary information in
a more accurate and reliable manner. Transmission HSI micro-
scope is one example of these combinatory technologies and has
been used in tissue pathology.

3 Hardware and Systems
HSI is a hybrid modality that combines imaging and spectros-
copy. By collecting spectral information at each pixel of a
two-dimensional (2-D) detector array, HSI generates a three-
dimensional (3-D) dataset of spatial and spectral information,
known as hypercube (shown in Fig. 1). With spatial information,
the source of each spectrum on samples can be located, which
makes it possible to probe more completely the light interactions
with pathology. The spectral signature of each pixel in the

Fig. 1 Comparison between hypercube and RGB image. Hypercube is three-dimensional dataset of a
two-dimensional image on each wavelength. The lower left is the reflectance curve (spectral signature) of
a pixel in the image. RGB color image only has three image bands on red, green, and blue wavelengths
respectively. The lower right is the intensity curve of a pixel in the RGB image.
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images enables HSI to identify various pathological conditions.
HSI generally covers a contiguous portion of the light spectrum
with more spectral bands (up to a few hundreds) and higher
spectral resolution than multispectral imaging (such as RGB
color cameras). Therefore, HSI has the potential to capture
the subtle spectral differences under different pathological
conditions, while multispectral imaging may miss significant
spectral information for diagnostics. The difference between
a hypercube and an RGB color image is illustrated in Fig. 1.
Among all the MHSI systems investigated in the literature,
the majority of the systems are prototypes consisting of the
off-the-shelf components, rather than commercialized systems.

An HSI system is mainly composed of the light source,
wavelength dispersion devices, and area detectors. To illustrate
the mechanisms of the HSI system, the principle of a typical
pushbroom HSI system is shown in Fig. 2 as an example. A
tissue sample illuminated by the light source is projected
through a front lens into an entrance slit, which only passes
light from a narrow line. After collimation, a dispersive device
(such as a prism, grating, etc.) splits the light into a series of
narrow spectral bands that are then focused onto a detector
array. Slit width controls the amount of light entering the
spectrograph. In this way, for each pixel interval along the
line defined by the slit, a corresponding spectrum is projected
on a column of the detector array. Thus, each line of the targeted
area on a tissue sample is projected as a 2-D image onto the
detector, with one spatial dimension and one spectral dimension.
By scanning over the tissue specimen or moving the camera
across the tissue sample in a pushbroom or line-scanning fash-
ion, an HSI camera collects 2-D images for adjacent lines, cre-
ating a hypercube with two spatial dimensions and one spectral
dimension.

3.1 Medical Hyperspectral Imaging Systems

There are many different ways of classifying HSI systems, such
as by image acquisition mode, spectral ranges and spectral
resolution, measurement mode, the type of dispersive devices,
the type of detector arrays. These classification methods will be
discussed in Secs. 3.1.1–3.1.5. Table 1 summarizes the represen-
tative HSI systems and their medical applications.

3.1.1 Acquisition mode

The fundamental classification scheme of HSI systems is based
on the acquisition mode, i.e., how spectral and spatial informa-
tion is acquired.61 The conventional HSI system involves two

scanning methods: spatial scanning and spectral scanning.
Spatial scanning methods generate hyperspectral images by
acquiring a complete spectrum for each pixel in the case of
whiskbroom (point-scanning) instruments or line of pixels in
pushbroom (line-scanning) instruments, and then spatially
scanning through the scene. Spectral scanning methods, also
called staring or area-scanning imaging, involves capturing
the whole scene with 2-D detector arrays in a single exposure
and then stepping through wavelengths to complete the data
cube. Spectral scanning approaches usually store images in
band-sequential format, which compromises performance
between spatial and spectral information, while spatial scanning
stores images either in the form of band interleaved by pixel or
band interleaved by line, both of which perform well in spatial
and spectral analysis. Whiskbroom and pushbroom HSI do not
provide live display of spectral images, which is calculated from
the spectra after the completion of the spatial scanning of the
corresponding area. Staring HSI scanning through wavelength
to build the hypercube has the advantage of displaying live spec-
tral images, which is essential for aiming and focusing.17 Staring
imaging is suitable for stationary applications, such as samples
under hyperspectral microscope. Pushbroom and staring imag-
ing modes are two of the most frequently used methods in the
literature.

Fourier transform infrared imaging (FTIR) is another type of
HSI system combining a Fourier transform spectrometer and
a focal plane array (FPA).62,63 FTIR collects a series of images
as a function of interferometer optical path difference, and the
spectral images are then transformed to frequency domain as
the final hypercube by fast Fourier transform. In this way,
FTIR spectra are recorded for every spatial location in the
image plane in parallel.62 The formation of the signal and propa-
gation of noise from detector array data collection to the final
hyperspectral data cube is significantly different from whiskb-
room and pushbroom HSI.63 In the literature, mid-wavelength
infrared HSI used in medical domain are all FTIR.36,60,62–73

These serial acquisition systems can only collect a fraction of
the full data cube at a single instant in time and must trade off
critical imaging parameters, such as speed, image size, resolu-
tion, and/or signal-to-noise ratio.49 Therefore, various new HSI
techniques have been developed to overcome these problems.
Bernhardt utilized an HSI system with rotational spectrotomog-
raphy to detect all available photons from an object while
obtaining enough information to reconstruct the data cube.74

Johnson et al.44 used a computed tomographic imaging spec-
trometer (CTIS) to capture both spatial and spectral information
in a single frame without moving parts or narrow-band (NB)

Fig. 2 Schematic diagram of a pushbroom hyperspectral imaging system.
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Table 1 Summary of representative hyperspectral imaging systems and their medical applications.

Reference
Spectral range

(nm)

Spectral
resolution
(μm∕pixel) Detector

Dispersive
device

Acquisition
mode

Measurement
mode Application

14 400 to 1100 — Si CCD Filter wheel Staring Reflectance Burn wounds

19 200 to 700 ∼5 CCD Filter wheel Staring Fluorescence and
reflectance

Cervical neoplasia

34 330 to 480 5 CCD Filter wheel Staring Fluorescence and
reflectance

Cervical cancer

35 530 to 680 12 CCD Prism Pushbroom Transmission Cutaneous wound

36 5000 to 10,526 11 HgCdTe — FTIR Reflectance Cervical pathology

37 500 to 600 — CCD LCTF Staring Reflectance Diabetic foot

38 400 to 720 — CCD LCTF Staring Fluorescence Tumor hypoxia and
microvasculature

39 440 to 640 1 to 2 CCD;
ICCD

AOTF Staring Fluorescence and
reflectance

Skin cancer

40 500 to 600 — CCD LCTF Staring Reflectance Hemorrhagic shock

41 365 to 800 ∼1 CCD Prism Pushbroom Transmission Melanoma

42 and 43 400 to 1000;
900 to 1700;
950 to 2500

5 Si CCD;
InGaAs;
HgCdTe

Grating Pushbroom Reflectance Skin bruises

44 450 to 700 ∼1 FPA CGH Snapshot Reflectance Ophthalmology

45 450 to 700 — CCD LCTF Staring Reflectance Breast cancer

46 650 to 1100 — FPA LCTF Staring Reflectance Laparoscopic surgery

47 400 to 1000;
900 to 1700

5 CCD;
InGaAs

PGP Pushbroom Reflectance Intestinal ischemia

48 1000 to 2500 6.29 HgCdTe PGP Pushbroom Reflectance Gastric cancer

49 450 to 650 4 to 10 CCD Prism Snapshot Reflectance Endoscope

50 410 to 1000 — Si CCD Grating Pushbroom Reflectance and
fluorescence

Atherosclerosis

51 400 to 720 — CCD LCTF Staring Reflectance Diabetic foot

52 450 to 950 2 CCD LCTF Staring Reflectance Prostate cancer

53 390 to 680 — CCD Grating Pushbroom Reflectance Laryngeal disorders

54 650 to 750 — CCD LCTF Staring Fluorescence and
reflectance

Cholecystectomy

55 400 to 640 — CCD Filter wheel Staring Fluorescence and
reflectance

Ovarian cancer

56 1000 to 2400 7 HgCdTe LCTF Staring Reflectance Pharmaceutical

57 900 to 1700 5 InGaAs AOTF Staring Reflectance Dental caries

58 550 to 950 2-5 CCD AOTF Staring Transmission Leucocyte pathology

59 550 to 1000 ∼2 CCD AOTF Staring Transmission Nerve fiber identification

60 2500 to 11,111 — HgCdTe — FTIR — Breast cancer

Note: ICCD, intensified charge-coupled device; Si CCD, silicon CCD; LCTF, liquid crystal tunable filter; FPA, focal plane array; AOTF, acousto-
optical tunable filter; CGH, computer-generated hologram; PGP, prism-grating-prism.
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filters, and with high optical throughput, which is well suited for
human retina imaging with constantly moving eyes. Trade-off
problems between imaging acquisition rate and signal through-
put in scanning-based techniques also lead to the development
of image mapping spectroscopy (IMS),49,75–77 which captures
the whole data cube in a single snapshot without compromising
image resolution, speed, optical throughput, or intensive post-
processing. The IMS is one of the first real-time, nonscanning
techniques capable of meeting the needs of out-of-the-lab
chemical imaging.77

3.1.2 Spectral range and spectral resolution

Spectral range refers to the wavelength regions covered by HSI
systems. MHSI systems can cover UV, VIS, NIR, and mid-IR
spectral ranges based on different medical applications. The
most widely used spectral range in the literature falls in VIS
and NIR regions. NIR spectral imaging relies on overtone
and combination vibrational bands and low-energy electronic
transitions in this region, while MIR imaging records the
absorbance of light at the vibrational and rotational frequencies
of the atoms within the molecule.22 The MIR absorbance spec-
trum contains rich information about the genomics, proteomics,
and metabolomics of a cell. However, water absorbs mid-IR
light strongly and masks vibrational absorption of other impor-
tant molecules, such as proteins, lipids, amino acids, carbohy-
drates, and other molecules within the sample.78 Table 2 defines
the spectral range from UV to mid-IR (200 to 25,000 nm).78

Visible light penetrates only 1 to 2 mm below the skin and
thus obtains information from the subpapillary,79 while light
in the NIR region penetrates deeper into the tissue than VIS
or mid-IR radiation.21 NIR light is preferred for surgical guid-
ance due to its deep penetration into the tissue, which can help
the surgeon see through connective tissue for visualizing critical
anatomical structures of interest that are not visible and
detecting molecules with detectible spectra.46–80 By expanding
light beyond the visual spectrum, additional information can be
obtained to further characterize the cells of interest.81

Spectral resolution of an HSI system refers to the absolute
limit of the ability of separating two adjacent monochromatic
spectral features emitted by a point in the image.82 Spectral
resolution measures the narrowest spectral feature that can be
resolved by an HSI system. High spectral resolution allows
accurate reconstruction of the true spectral profile of an emitting
light from all points in the tested sample. Another important
parameter of an HSI system is spectral bandwidth, which is
defined as the full width at half maximum.82 HSI systems
with higher spectral resolution and narrower bandwidth poten-
tially provide more accurate spectral signature of the sample.

3.1.3 Measurement mode

Based on the optical properties of biological tissue, HSI systems
can work on reflectance, fluorescence, and transmission modes
across the UV, VIS, and NIR regions of the electromagnetic
spectrum. Majority of the HSI systems in the literature were
implemented on the reflectance mode, which measures the
reflectance spectral of samples. In reflection measurement,
the detector and the light source are on the same side of the sam-
ple, which is assumed to be thick and incapable of transmis-
sion.22 In many cases, fluorescence and reflectance modes are
employed together to identify biomolecular and morphologic
indicators of various tumors.19,34,83 In transmission mode,
light is transmitted through tissue samples from a light source
placed below the sample holder and recorded by an imaging
spectrograph placed above the sample. Transmission mode is
usually used when hyperspectral systems are integrated with
microscopes to measure light intensity transmitted through
samples.35,41,59,84–86

3.1.4 Dispersive devices

Dispersive devices are the core element of an HSI system, which
are either located between the light source and the sample for
excitation wavelength selection or between the sample and the
detector arrays for emission wavelength dispersion. There are
many types of optical and electro-optical dispersive devices,
which can perform spectral dispersion or selection in HSI sys-
tems. The commonly used dispersive devices in the literature
can be divided into three classes: (1) monochromators: prism
and diffraction grating, (2) optical bandpass filters: either
fixed filter or tunable filters, and (3) single-shot imagers. The
mechanisms, advantages, and disadvantages of these dispersive
devices are described below.

Monochromator. Monochromators separate polychromatic
or white light into its constituent spectrum of colors. There
are two types of monochromators, i.e., prism and diffraction gra-
ting, which are the core components in pushbroom HSI systems.
Prism disperses light because of the change of the refractive
index of the prism material, which varies with the wavelength
of incident light, and then causes the incident light of different
wavelengths to leave the prism at different angles. A diffraction
grating consists of reflecting or transmitting elements spaced at
a distance comparable to the wavelength of the light under
investigation. With lines or grooves ruled on the surface, grating
is able to diffract incident light and modify the electric field
amplitude or phase, or both, of the incident electromagnetic
wave.87 Prism has very high light throughput and low scatter
over the spectral range of VIS and NIR, and is free from over-
lapping spectral orders that cause complications in grating.
However, optical designs based on prism tend to be more com-
plex than grating because of the nonlinear scanning dispersion
of the prism.

Prism-grating-prism (PGP) is a direct vision dispersive com-
ponent that allows small, low-cost HSI spectrographs for indus-
try and research applications in the spectral range of 320 to
2700 nm. It consists of a specially designed, volume transmis-
sion grating cemented between two almost identical prisms,
with short- and long-pass filters placed between the grating
and prism to block unwanted wavelengths and avoid surface
reflections.88 Khoobehi et al.89 used an HSI system incorporated
with a PGP structure in the spectral range of 410 to 950 nm to

Table 2 Spectral range definitions.

Short name Full name Spectral range (nm)

UV Ultraviolet 200 to 400

VIS Visible 400 to 780

NIR/near-IR Near-infrared 780 to 2500

MIR/mid-IR Mid-infrared 2500 to 25,000
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measure retinal oxygen saturation. PGP covering VIS and NIR
spectral regions have been integrated into a series of commer-
cialized hyperspectral systems to provide high diffraction effi-
ciency and good spectral linearity.90 PGP has been employed for
numerous medical applications.47,48,85,91–96

Optical bandpass filter. Optical bandpass filters are either
fixed or tunable and are widely used in area-scanning HSI sys-
tems. Fixed bandpass filters, such as interference filters, are
usually placed in a filter wheel that rotates either in front of
detector arrays or in front of the light source to transmit the
wavelength of interest while rejecting light out of the pass
band. Filter wheels are usually incorporated in multispectral
systems because they contain no more than 10 bandpass
filters.14,55,97–100 Although filter wheels are convenient to
use, they suffer from disadvantages of narrow spectral range,
low resolution, slow speed of wavelength switching, mechani-
cal vibration from moving parts, and image misregistration due
to filter movement.82 Tunable filters are commonly used in the
area-scanning HSI systems, which can be electronically con-
trolled without moving parts and at high tuning speeds.101

Liquid crystal tunable filter (LCTF) and acousto-optical tuna-
ble filter (AOTF) are predominantly utilized in most MHSI
systems because of their high image quality and rapid tuning
speed over a broad spectral range. LCTFs are generally built by
a stack of polarizers and tunable retardation liquid crystal
plates.101 LCTFs work from the VIS to NIR region. AOTFs
consist of a crystal in which radio frequency acoustic waves
are used to separate a single wavelength from incident
light.101 AOTFs operate at a broader wavelength range from
UV to IR. AOTFs also have faster tuning speeds than
LCTFs. However, the image quality of AOTF is relatively
poor due to their acousto-optic operating principles.

Single-shot imager. Single shot imagers, such as a com-
puter-generated hologram (CGH), are used to disperse light
in snapshot HSI systems.44,76,102 CGH consists of cells of square
pixels that are arrayed to form a 2-D grating. CGH enables CTIS
to capture both spatial and spectral information in a single
frame.

3.1.5 Detector arrays

A detector array or detector FPA is an assemblage of individual
detectors located at the focal plane of an imaging system.103

In HSI, FPA includes 2-D arrays that are designed to measure
the intensity of light transmitted by dispersive devices by con-
verting radiation energy into electrical signals. Detectors can
work in a wide spectral range of electromagnetic spectrum
based on their spectral responses and application requirements.
Selection of a suitable FPA is one of the most important
steps in the development of spectrometer.104 Many parameters
that characterize the performance of detector arrays, such as sig-
nal-to-noise ratio, dynamic range, spectral quantum efficiency,
linearity, and so on,103 need to be considered when choosing
a suitable FPA because the performance of the detector arrays
directly determines the image quality.

Charge-coupled devices. The most widely used detector
arrays in the literature are charge-coupled devices (CCDs)
because of their high quantum yield and very low dark current.
CCDs consist of many photodiodes that are composed of light-
sensitive materials, such as silicon (Si), indium gallium arsenide

(InGaAs), indium antimonite, and mercury cadmium telluride
(HgCdTe). Based on the spectral response of these materials,
the working wavelength range of CCDs varies from UV to
NIR. Cooling CCDs can lower the operating temperature of
the detectors and, therefore, reduce dark-current noise. Two
technologies currently available for cooling IR and VIS detec-
tors are mechanical cryocoolers and thermoelectric coolers.103

Thermoelectrically cooled CCDs perform well in MHSI sys-
tems.98,105–107

Silicon CCDs are mostly used in the VIS and NIR regions in
MHSI systems14,42,50,105–107 due to their high resolution, rela-
tively inexpensive cost, and acceptable quantum efficiency in
the spectral range.

The InGaAs photodiodes made of indium arsenide (InAs)
and gallium arsenide (GaAs) extend applications well into
the short-wavelength infrared (SWIR, ∼780 to 1100 nm)
with high quantum efficiency across this region. Standard
InGaAs (InAs 53% and GaAs 47%) detectors are sensitive in
the 900 to 1700 wavelength region. InGaAs detectors are
well suited for medical applications in NIR and SWIR
regions.42,57,96 Te-cooled InGaAs photodiode arrays are utilized
in order to minimize dark noise.57 HgCdTe detectors covering
both MWIR have been employed in cancer diagnosis,71 lymph
node imaging,68 and assessment of homogeneity distribution in
oral pharmaceutical solid dosage forms.56

Intensified CCD and electron multiplying CCD. While
regular CCD arrays that require sufficient light and exposure
to ensure high-quality images are suited for hyperspectral reflec-
tance and transmittance imaging, high-performance detector
arrays such as intensified CCD (ICCD) and electron multiplying
CCD (EMCCD) are usually used to detect weak signals for low-
light applications, such as fluorescence imaging and Raman im-
aging. Martin et al.83 developed a dual-modality HSI system,
which utilized CCD color cameras for reflection detection
and ICCD for fluorescence detection for medical diagnosis.108

Vo-Dinh et al.109 proposed a hyperspectral Raman imaging sys-
tem that integrated ICCD with a spectrograph to detect Raman
signals for biological imaging. Li et al.110 developed a 3-D mul-
tispectral fluorescence optical tomography imaging system that
took fluorescence pictures by EMCCD.

Photomultiplier tube arrays. Photomultiplier tube (PMT)
arrays are another type of detector that generates an electric
output after a photon strikes in photocathode in just a few
nanoseconds. PMT arrays offer faster speed than CCD and
complementary metal oxide semiconductor (CMOS); therefore,
they have been employed to replace CCD in order to meet
the fast scan-time requirement of the HSI systems.111

Complementary metal oxide semiconductor. Despite the
advantages of low cost and low power supply, CMOS detectors
have higher dark current and noise than CCD detectors, which
has limited their use in HSI systems. In the literature, one system
designed for biomedical applications contains CMOS detectors
working in the 550 to 1000 nm wavelength range.112

3.1.6 Combination with other techniques

An HSI system has been combined with many other techniques,
such as laparoscope,46 colposcope,34 fundus camera,76,113,114 and
Raman scattering,115 in order to leverage the key benefits of each
instrument individually and provide more useful information for
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disease diagnosis and treatment. The most common combina-
tion is with microscope35,38,85,116–121 or confocal microscope,122

which has been proved useful in the investigation of the spectral
properties of tissue.

Epifluorescence microscopes and imaging spectrometers are
often coupled to form an HSI microscope. Tsurui et al.116 pro-
posed an HSI system consisting of an epifluorescence micro-
scope and an imaging spectrometer to capture and classify
complete fluorescent emission spectra from multiple fluoro-
phores simultaneously from typical biomolecular samples, iden-
tify the location of the emission, and build libraries to enable
automatic analysis in subsequent acquisitions. Schultz et al.123

developed a prototype HSI microscope combining a standard
epifluorescence microscope and an imaging spectrograph to
capture and identify different spectral signatures present in an
optical field during a single-pass evaluation. However, the
major limitation with these systems is their small fields of
view (FOVs), thus requiring image tiling for tissue-section
imaging. In order to increase the FOV, Constantinou et al.124

integrated a confocal scanning macroscope with a prototype
HSI mode called a hyperspectral macroscope (HSM), which
allows imaging of entire microscope slides in a single FOV,
avoiding the need to tile multiple images together. In confocal
fluorescence microscopy, the scanning mechanism of HSM im-
aging must trade off between image signal-to-noise ratio and
photobleaching.

4 Image Analysis
Image analysis enables the extraction of diagnostically useful
information from a large medical hyperspectral dataset at the
tissue, cellular, and molecular levels and is, therefore, critical
for disease screening, diagnosis, and treatment. Hypercube
with high spatial and spectral resolution may potentially contain
more diagnostic information. However, high spatial and spectral
dimensions also make it difficult to perform automatic analysis
of hyperspectral data. In particular, it is complex in many
aspects: (1) high data redundancy due to high correlation in
the adjacent bands, (2) variability of hyperspectral signatures,
and (3) curse of dimensionality.125 With abundant spatial and
spectral information available, advanced image classification
methods for hyperspectral datasets are required to extract,
unmix, and classify relevant spectral information. The goal is
not only to discriminate between different tissues (such as
healthy and malignant tissue) and provide diagnostic maps,
but also to decompose mixtures into the spectra of pure molecu-
lar constituents and correlate these molecular fingerprints (bio-
markers) with disease states. Although hyperspectral image
analysis methods have been intensively investigated in the
remote sensing area, their development and application in medi-
cal domain lag far behind. The relationships between spectral
features and underlying biomedical mechanisms are not well
understood. The basic steps for hyperspectral image analysis
generally involve preprocessing, feature extraction and feature
selection, and classification or unmixing.

4.1 Data Preprocessing

HSI preprocessing mainly involves data normalization and
image registration. Gaussian filter was also used in the literature
to smooth spectral signatures and reduce the noise effect.108

Data normalization converts or normalizes hyperspectral
radiance observations to reflectance93–126 or absorbance127,128

values that describe the intrinsic properties of biological

samples. Such normalization also reduces system noise and
image artifacts arising from uneven surface illumination or
large redundant information in the subbands of hyperspectral
imagery, and better prepares data for further analysis. Two
most commonly used normalization methods are as follows:

4.1.1 Reflectance

CCD arrays used in HSI systems generally have dark current
even without light shining on it. Dark current is dependent
on temperature and is proportional to integration time. So, to
convert raw intensity into reflectance, reference and dark images
are taken before acquiring sample images. The reference image
is taken with a standard reflectance surface placed in the scene,
and the dark current is measured by keeping the camera shutter
closed. Currently, the widely used standard reflectance surface is
the National Institute of Standards and Technology certified
99% Spectralon white diffuse reflectance target. The raw data
were then corrected using the following equation:93,126

Iref ¼
Iraw − Idark
Iwhite − Idark

; (1)

where Iref is the calculated reflectance value, Iraw is the raw data
radiance value of a given pixel, and Idark and Iwhite are the dark
current and the white reference intensity of the given pixel,
respectively.

4.1.2 Optical density or absorbance

The absorbance Iabs is usually calculated by taking the ratio of
the sample images (Iraw) with respect to a reference image
(Iref).

127,128

Iabs ¼ − log
Iraw
Iref

: (2)

The reference material provides a measure of the instrument
response function, and therefore, the method effectively ratios
out the instrument response function from the resultant optical
density image set.

Image registration finds a geometric transformation of multi-
ple images of the same scene taken at different wavelengths. The
correspondence between the images is maximized when an
image pair is correctly aligned. To obtain accurate spectral infor-
mation for each pixel, image registration may be necessary to
spatially align all spectral band images within one hypercube
or between different hypercubes. Kong et al.108 utilized mutual
information (MI) as a metric for searching the offset of the band
images along the horizontal axis, and an image pair with maxi-
mum MI shows the best match between a reference image and
an input image. Each band image was spatially coregistered to
eliminate the spectral offset caused during the image acquisition
procedure. Panasyuk et al.45 performed image registration as
a preprocessing step to account for slight motion during the
imaging of anesthetized mice. Lange et al.129 developed an
elastic image registration algorithm to match reflectance and
fluorescence images to compensate for soft tissue movement
during the acquisition of reflectance and fluorescence image
cubes. A detailed description of image registration algorithms
is beyond the scope of this paper. Interested readers may
check relevant references to identify a suitable approach for
a specific study.
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4.2 Feature Extraction and Selection

The goal of feature extraction and selection is to obtain the most
relevant information from the original data and represent that
information in a lower-dimensionality space. For hyperspectral
datasets, a larger number of spectral bands may potentially make
the discrimination between more detailed classes possible. But
due to the curse of dimensionality, too many spectral bands used
in classification may decrease the classification accuracy.125

Moreover, not all of the intensities measured at a given wave-
length are important for understanding the underlying character-
istics of biological tissue17 since the reflectance or fluorescence
features of biological tissue is wavelength dependent. Therefore,
it is important to perform feature extraction and selection to
extract the most relevant diagnostic information and process
the dataset more efficiently and accurately. In hyperspectral
datasets, each pixel can be represented in the form of an N-
dimensional vector, where N is the number of the spectral
bands. Such pixel-based representation has been widely used
for hyperspectral image processing tasks. This method treats
hyperspectral data as unordered listings of spectral measure-
ments without particular spatial arrangement,130 which may
result in a salt-and-pepper look for the classification map.
Therefore, feature extraction methods incorporating both spatial
and spectral information have been investigated intensively in
the remote sensing area to improve classification accuracy.
Recent advances of spatial-spectral classification have been
summarized in Ref. 131.

To exploit the information in these datasets effectively,
dimensionality reduction methods are required to extract the
most useful information, reduce the dimensionality of the data-
sets, and handle highly correlated bands. Methods of dimension-
ality reduction can be divided into two categories: feature
extraction and band selection. The most widely used dimension-
ality reduction method for medical hyperspectral dataset
analysis is principle component analysis (PCA). PCA reduces
redundant information in the bands of hyperspectral imagery
while preserving as much of the variance in the high-dimen-
sional space as possible. Assume a hypercube consists of N
spectral images, and each image has a dimension of m × n;;
then each image hasM ¼ m × n pixels, and the i’th pixel within
an image can be represented as a spectra vector xi ¼
½xi1; xi2; · · · ; xiN �T , i ¼ 1; 2; · · · ;M. Therefore, each hypercube
can be represented as an N ×M matrix, where X ¼
ðx1; x2; · · · ; xMÞ. The steps to compute the PCA transform of
the N ×M matrix are as follows:132

1. Center the matrix as X̄ ¼ ½x1 − μ; x2 − μ; · · · ; xM − μ�,
where μ ¼ 1

M

P
M
i¼1 x

i is the mean spectral vector of all
pixels.

2. Compute the covariance matrix Σ ¼
1
M

P
M
i¼1ðxi − μÞðxi − μÞT ¼ X̄X̄T .

3. Decompose the covariance matrix as Σ ¼ UΛUT ,
where Λ ¼ diagðλ1; λ2; · · · ; λNÞ is a diagonal matrix
with eigenvalues in the diagonal entries, and
U ¼ ½u1; u2; · · · ; uN �T is an orthonormal matrix
composed of the corresponding eigenvectors
u1; u2; · · · ; uN .

4. Sort the eigenvalues and eigenvectors in descending
order, and the first K eigenvectors UK ¼
ðu1; u2; · · · ; uKÞ are used to approximate the original

images: zi ¼ ½zi1; zi2; · · · ; ziK�T ¼ UT
Kx

i, where vector
zi, i ¼ ½1; 2; · · · M� will form the first K bands of
the PCA images.

PCA of hyperspectral image data can highlight the relative dis-
tributions of differentmolecular componentmixtures,46,133 identify
key discriminative features,19,134 and estimate spectrum in the
spectroscopic data.86 PCA is optimal in the sense of minimizing
the mean square error. However, PCA transforms the original
data toasubspacespannedbyeigenvectors,whichmakes itdifficult
to interpret the biological meaning after transformation.

Several PCA variants, such as minimum noise fraction
(MNF) and independent component analysis (ICA) are also
used for feature extraction and dimensionality reduction.
MNF transform is essentially two cascaded PCA transforma-
tions for reducing the spectra dimensionality and separating
noise from the image data.50 ICA is also a useful extension
of PCA by making the spectral features as independent as pos-
sible. The key idea of the ICA assumes that data are linearly
mixed by a set of separate independent sources and demix
these signal sources according to their statistical independency
measured by mutual information.135

4.3 Classification

Hyperspectral image classification methods applied in the medi-
cal area mainly include pixel and subpixel classification based
on the type of pixel information used. Pixel-wise classification
can be parametric or nonparametric. Parametric classifiers gen-
erally assume normal distribution for the data, which is often
violated in practice.136 Nonparametric methods, such as support
vector machines (SVMs) and artificial neural networks (ANN)
are widely used in medical hyperspectral image processing. The
subpixel method assumes the spectral value of each pixel to be a
linear or nonlinear combination of pure components. Pixel- and
subpixel-based methods can be supervised or unsupervised.
Commonly used supervised classification methods include
SVMs, ANN, spectral information divergence (SID), and spec-
tral angle mapper (SAM). The following sections will discuss
some of these methods in detail.

4.3.1 Support vector machines

SVM is a kernel-based machine learning technique that has
been widely used in the classification of hyperspectral
images.48,52,95,108,137–144 Due to its strong theoretical foundation,
good generalization capability, low sensitivity to the curse of
dimensionality,145 and ability to find global classification solu-
tions, SVM is usually preferred by many researchers over other
classification paradigms. Given training vectors xi ∈ RN ,
i ¼ 1; 2; · · · ;M in two classes, and an indicator vector
y ¼ ½y1; y2; · · · ; yM�T ∈ RM such that yi ∈ f1;−1g, C-support
vector classification146,147 solves the following primal optimiza-
tion problem:

min
w;b;ε

1

2
wTwþ C

XM
i¼1

εi

subject to yiðwTφðxiÞ þ bÞ ≥ 1 − εi; εi ≥ 0;

i ¼ 1; : : : ;M:

(3)

φðxiÞ maps xi into a higher-dimensional space and C > 0
is the regularization parameter. Due to the possible high
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dimensionality of the vector variable w, usually we solve the
following dual problem:

min
α

1

2
αTQα − eTα subject to yTα ¼ 0; 0 ≤ αi ≤ C;

i ¼ 1; : : : ;M: (4)

e ¼ ½1; : : : ; 1�T is the vector of all ones, Q is an M by
M positive semidefinite matrix, Qij ≡ yiyjKðxi; xjÞ, and
Kðxi; xjÞ ≡ φðxiÞTφðxjÞ is the kernel function.

After Eq. (4) is solved, using the primal-dual relationship, the
optimal w satisfies

w ¼
XM
i¼1

yiαiφðxiÞ: (5)

So, for a new test point x, the decision function is

sgnðwTφðxÞ þ bÞ ¼ sgn

�XM
i¼1

yiαiKðxi; xÞ þ b

�
: (6)

SVM has been proved to perform well for classifying hyper-
spectral data.137 In the processing of medical hyperspectral data,
SVM has also been explored for various classification tasks.
Melgani and Bruzzone137 investigated the effectiveness of
SVMs in the classification of hyperspectral remote sensing
data. It was found that SVMs were much more effective than
radial-basis function (RBF) neural networks and the K-nearest
neighbor classifier in terms of classification accuracy, computa-
tional time, and stability to parameter settings. Kong et al.108

chose Gaussian RBF kernel as the kernel function for SVM
and learned the SVM parameters from 100 training samples
chosen randomly from each of the normal and tumor classes.
For testing, 2036 (normal) and 517 (tumor) samples were
used. Experimental results showed that the spatial filtering
enhanced the performance, which resulted in an overall accu-
racy of 86%, while the use of the original data had an accuracy
of 83%.

In our group, we used SVMs for various tissue classification
tasks. In Ref. 52, Akbari et al. extracted and evaluated the spec-
tral signatures of both cancerous and normal tissue and used
least squares SVMs to classify prostate cancer tissue in
tumor-bearing mice and on pathology slides. In Ref. 140,
they created a library of spectral signatures for different tissues
and discriminated between cancerous and noncancerous tissues
in lymph nodes and lung tissues with SVMs. In Ref. 95, Akbari
et al. constructed a library of spectral signatures from hyperspec-
tral images of abdominal organs, arteries, and veins, and then
differentiated between them using SVMs. In Ref. 48, they uti-
lized least squares kernel SVMs to classify normal tissues and
tumors based on their standard deviation and normalized differ-
ence index of spectral signature.

4.3.2 Artificial neural networks

Neural network is another supervised classification method
that has been adopted by many researchers,92,96,100,136 due to
its nonparametric nature, arbitrary decision boundary, etc.
Multilayer perceptron (MLP) is the most popular type of neural
network in image classification.136 It is a feed-forward network
trained by the backpropagation algorithm. Monteiro et al.93

implemented both single-layer perceptron (SLP) and MLP as
supervised classifiers. The MLP notably generated the clearest
visualization of the calendar’s number under the blood.
Although the SLP was also able to learn a good visualization,
the output presented more noise.

4.3.3 Spectral information divergence

SID models the spectrum of a hyperspectral image pixel as a
probability distribution in order to measure the discrepancy
of probable behaviors between two spectra. Guan et al.58

used the SID technique to segment pathological white blood
cells (WBCs) into four components: nucleus, cytoplasm, eryth-
rocytes, and background. The SID method could not only
distinguish different parts with similar gray values, e.g., in
the case of cytoplasm and erythrocyte, but also segment WBCs
accurately in spite of their irregular shapes and sizes.

4.3.4 Spectral angle mapper

SAM determines the spectral similarity by calculating the angle
between the spectra and treating them as vectors in a space with
dimensionality equal to the number of wavelengths. Martin
et al.53 employed SAM algorithm to map the spectral similarity
between image spectra and cluster spectra in order to perform
supervised classification, and they found that SAM disregarded
specific surface irregularities of the vocal cords that naturally led
to inhomogeneous reflections in every patient. Li et al.59 used
the SAM algorithm to identify the nerve fibers from the molecu-
lar hyperspectral images of nerve sections according to the
difference of the spectral signatures of different parts.

4.3.5 Spectral unmixing

One of the confounding factors in analyzing hyperspectral
images is that the spectra at many pixels are actually mixtures
of the spectra of the pure constituents. Spectral unmixing is a
subpixel analysis method, which decomposes a mixed pixel
into a collection of distinct spectra or endmembers, and a set
of fractional abundances that indicate the proportion of each
endmember.148 Spectral unmixing algorithms can be supervised
or unsupervised. Supervised spectral unmixing relies on the
prior knowledge about the reflectance patterns of candidate sur-
face materials, while unsupervised unmixing aims to identify the
endmembers and mixtures directly from the data without any
user interaction.149 Many unmixing algorithms that were com-
monly used in the remote sensing area have been explored in
medical HSI. Berman et al.71 implemented an unmixing method,
i.e., iterated constrained endmembers, for hyperspectral data of
cervical tissue. They identified cellular and morphological fea-
tures as a prelude to construct a library of biologically interpret-
able endmembers. In another study, Constantinou et al.124

applied linear unmixing to hyperspectral images in order to
remove autofluorescent signal contribution. It was considered
that hyperspectral spatial spectrum is a combination of auto-
fluorescence spectrum and other fluorescence spectrum of
object tissues such as tumors. By decompositing the acquired
spectra into different ones, autofluorescent signals can be
removed or reduced. Sorg et al.38 performed spectral mixture
analysis by utilizing a spectral angle-mapping technique in
order to classify pixels as expressing green fluorescent protein
(GFP) or red fluorescent protein (RFP).
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5 Medical Applications
HSI is able to deliver nearly real-time images of biomarker
information, such as oxyhemoglobin and deoxyhemoglobin,
and provide assessment of tissue pathophysiology based on
the spectral characteristics of different tissue.45 Therefore,
HSI is increasingly being used for medical diagnosis and
image-guided surgery. For example, HSI has been applied to
the diagnosis of hemorrhagic shock,40,150 the assessment of
peripheral artery disease,151 early detection of dental caries,57

fast characterization of kidney stone types,96 detection of laryn-
geal disorders,53 and so on. In the following section, we focus on
the applications of HSI to cancer, cardiac disease, retinal dis-
ease, diabetic foot, shock, tissue pathology, and image-guided
surgery.

5.1 Disease Diagnosis

HSI has tremendous potential in disease screening, detection,
and diagnosis because it is able to detect biochemical changes
due to disease development, such as cancer cell metabo-
lism.19,34,152 In the literature, a variety of studies have used
HSI techniques to augment existing diagnostic methods or to
provide more efficient alternatives. In this section, diseases,
such as different types of cancer, cardiac disease, ischemic tis-
sue, skin burn, retinal disease, diabetes, kidney disease, and
so on, are investigated by various HSI systems.

5.1.1 Cancers

The rational for cancer detection by optical imaging lies in the
fact that biochemical and morphological changes associated
with lesions alter the absorption, scattering, and fluorescence
properties; therefore, optical characteristics of tissue can in
turn provide valuable diagnostic information. For example, opti-
cal absorption can reveal angiogenesis and increased metabolic
activity by quantifying the concentration of hemoglobin and
oxygen saturation.16 Kortum et al.153 used optical spectroscopy
to detect neoplasia and reported that (1) the increased metabolic
activity affects mitochondrial fluorophores and changes the
fluorescence properties in precancerous tissue and (2) fluores-
cence and reflectance spectra contain complementary informa-
tion that was useful for precancer detection.

Compared to optical spectroscopy that measures tissue
spectra point-by-point, HSI is able to capture images of a
large area of tissue and has exhibited great potential in the
diagnosis of cancer in the cervix,19,34,81,154 breast,45,155

colon,66,84,117,118,142,156–159 gastrointestine,160,161 skin,41,97 ovary,55

urothelial carcinoma,162 prostate,52 esophagea,163 trachea,164

oral tissue,20,32,165,166 tongue,126 lymph nodes,72 and brain.98

HSI cancer studies have been performed in the following
major aspects: (1) recognizing protein biomarkers and genomic
alterations on individual tumor cells in vitro,167 (2) analyzing the
morphological and structural properties of cancer histological
specimens to classify the cancer grades, (3) examining the tissue
surface to identify precancerous and malignant lesions in vivo,
and (4) measuring the tissue blood volume and blood oxygena-
tion to quantify the tumor angiogenesis and tumor metabolism.
The following section briefly summarizes the research works
that have been performed for certain types of cancers without
covering all the above-mentioned cancers.

Cervical cancer. Cervical cancer was once one of the most
common causes of cancer death in American women. Pap smear

tests, the current screening method for cervical cancer, are
based on optical techniques and offer an effective method for
identifying precancerous and potentially precancerous changes
in cervical cells and tissue.168 However, the Pap smear test
has been reported to have a false positive rate of 15 to 40%.
It has also been reported that in normal cervical tissue, collagen
and crosslinks exhibit bright fluorescence in the stroma over
a wide range of excitation wavelengths, while in cervical
precancers, stromal fluorescence is strongly decreased.154

Studies also showed that both reflectance and fluorescence spec-
troscopy can detect increased angiogenesis, which accompanies
precancer.169

In vivo study: A combination of fluorescence and reflectance
imaging has been shown to be able to interrogate the cervix tis-
sue in vivo. Ferris et al.19 performed a clinical study on a diverse
population of women with varying disease and nondisease states
with an MHSI system covering the UV and VIS regions, and
measured tissue fluorescence and reflectance of the cervical epi-
thelium on the ectocervix. This system employs both fluores-
cence and reflectance tissue excitation with a multichannel
spectrograph capable of hyperspectral resolution of ∼5 nm

and spatial resolution of the ectocervix of ∼1 mm. They showed
that the system could discriminate high-grade cervical lesions
from less-severe lesions and normal cervical tissue, and could
detect cervical cancer precursors at a rate greater than that
obtained by a simultaneously collected Pap smear. It was con-
cluded that fluorescence and reflectance mapping of cervical
neoplasia may have some value as a colposcopy adjunct.

Later, multispectral digital colposcope (MDC) was built
to incorporate multispectral imaging with colposcope by
Benavides et al.34 in order to measure the autofluorescence
and reflectance images of the cervix. It was concluded that
MDC could provide significant diagnostic information for dis-
crimination between cervical intraepithelial neoplasia lesions
and normal cervical tissues, and that excitation wavelengths
across the spectral range of 330 to 360 nm and 440 to
470 nm appeared important in cervical cancer diagnosis.

Histology study: Besides the in vivo studies, HSI on cervical
cancer histology slides also showed promising results. Siddiqi
et al.81 successfully improved the overall efficiency and objec-
tivity in Pap test diagnosis by utilizing an HSI system coupled
with microscope. They identified normal, low-grade, and high-
grade H&E-stained cervical cells on TriPath liquid-based Pap
test slides, squamous cell carcinoma (SCC) cells, as well as
atypical squamous cells based on their unique spectra profiles.
It was found that cervical cells with varying degrees of dysplasia
demonstrated different spectra, which could be due to the
change in the quantity and organization of the chromatin. It
was also found that H&E and Pap stain were designed only
for visual spectrum and that the use of IR and UV spectral
range may further enhance the efficacy of HSI. Wood et al.67

employed FTIR to collect spectra of glandular and squamous
epithelium, and of the cervical transformation from the H&E-
stained cervical samples. They performed multivariate statistical
analysis of the FTIR spectra to distinguish different tissue types
and found the amide I and II regions to be very important in
correlating anatomical and histopathological features in tissue
to spectral clusters.

Breast cancer. Breast cancer is the leading cause of cancer
deaths among American women.170 An inadequate supply of
oxygen in tumor cells leads to hypoxia, which has been
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shown to be of prognostic value in clinical trials involving radi-
ation, chemotherapy, and surgery.

In vivo study: Sorg et al.38 applied HSI to acquire serial
spatial maps of blood oxygenation in terms of hemoglobin
saturation at the microvascular level on the mouse mammary
carcinoma in vivo. RFP was used to identify mouse mammary
carcinoma cells, while hypoxia-driven GFP was used to identify
the hypoxic fraction. Their studies may improve the treatment
and protocols to address or exploit tumor behavior.

Histology study: Boucheron et al.155 acquired multispectral
images with 29 spectral bands, spaced 10 nm within the
range of 420 to 700 nm, from 58 H&E-stained breast cancer
biopsy samples and then classified the nuclei of breast cancer
cells with the multispectral image bands, or the constructed
RGB imagery, or single image bands. They found that multi-
spectral imagery for routine H&E-stained histopathology
provided minimal additional spectral information for the pixel-
level nuclear classification task than standard RGB imagery
did. However, their result was limited to the classification of
nuclei in breast histology within the spectral range of 420 to
700 nm with small number of wavelength bands. Kumar
et al.60 applied FTIR on histopathological specimens of breast
cancer with different histological grades. FTIR spectral changes
close to and far from carcinoma were reported. PCA was per-
formed to analyze the data. Their preliminary study suggested
that FTIR spectral features present in the 5882 to 6250 nm could
be used as spectral markers for identification of cancer-induced
modifications in collagen.

Skin cancer. Two types of skin cancer have been investigated
using MHSI: melanoma and Kaposi’s sarcoma (KS). Melanoma
is the most life-threatening form of skin cancer, which is respon-
sible for ∼75% of skin cancer deaths in 2012.170 KS is a highly
vascularized tumor that causes cutaneous lesions.

In vivo human study: Hattery et al.97 built a six-band multi-
spectral NIR imaging system to identify thermal signatures of
blood volume on patients with KS and who were starting
anti-angiogenesis therapy. Results showed that relative spatial
tissue blood volume and blood oxygen saturation values
could be used as indicators of tumor angiogenesis and tumor
metabolism.

Histology study: Dicker et al.41 searched for spectral
differences between benign and malignant dermal tissue in
the routine H&E-stained specimens. In their study, the spectral
differences could be objectively identified provided that staining
time and section thickness were controlled. Figure 3 shows

a gray-scale image of a melanoma lesion and also intersti-
tial areas.

Head and neck cancer. Head and neck cancer (HNC)
occurs in the head or neck region, including lip, oral cavity,
nasal cavity, oropharynx, hypopharynx, larynx, etc. Most of
the HNCs are SCC that originate from the epithelial region.
Therefore, HSI with limited penetration depth is possible to
detect the cancerous tissue.

Clinical trial: Oral cancer is a subtype of HNC located in the
oral cavity, which is commonly examined by visual inspection
and palpation of the mouth. However, this visual screening
method depends heavily on the experience and skills of the
physicians. Roblyer et al.32,165 reported the use of a multispectral
digital microscope (DMD) for the detection of oral neoplasia in
a pilot clinical trial. The proposed DMD was a multimodal im-
aging method that combines the fluorescence, NB reflectance,
and orthogonal polarized reflectance (OPR) modes. They
observed decreased blue/green autofluorescence and increased
red autofluorescence in the lesions and increased visibility of
vasculature with NB and OPR imaging.

Histology study: In our group, Akbari et al.140 imaged patho-
logical slides using a hyperspectral camera and reported the
detection of HNC metastasis with promising sensitivity and
specificity. Liu et al.126 measured and analyzed the reflectance
spectra of human tongue noninvasively.

Colon cancer. Colon cancer, also known as colorectal
cancer, is a malignant disease of the colon or rectum, or appen-
dix, and is the third leading cause of cancer death for both men
and women.170 Pathological analysis is the basis of cancer diag-
nosis and treatment. Malignant tumor leads to considerable
variation in nuclei size and shape. Traditionally, pathologists
examine the specimens under the microscopes and make judg-
ments based on the deviations in the cell structures and changes
in the distribution of the cells across the tissue under examina-
tion. However, this process is time-consuming, subjective, and
inconsistent due to inter- and intraobserver variations.171 To
overcome these problems, MHSI has been applied to discrimi-
nate different cell types and tissue patterns based on pathology
slides.

Histology study:Masood and colleagues explored a series of
research problems for classification of hyperspectral colon
biopsy images. First, they performed morphological analysis
of gland nuclei cells and classified them into normal and malig-
nant classes based on the shape, size, orientation, and other

Fig. 3 A gray-scale image of a melanoma lesion showing the transmission spectra in the nuclear and
interstitial areas.41
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geometrical attributes of the cellular components. From this,
they concluded that HSI has enough discriminatory power to
distinguish normal and malignant biopsy tissues.117 Second,
they selected a single band that was considered to contain suf-
ficient textural information. Then they classified colon biopsy
samples into benign and malignant classes based on the textural
information extracted from the single band and achieved a rea-
sonable classification result.142,158 Third, they compared the
classification result of a single band with 3-D spectral/spatial
analysis, and the former achieved comparable accuracy for
SVM-based classification of 32 hyperspectral images of colon
biopsy samples.118,159

While Masood mainly focused on classifying the colon
biopsy tissue into benign and malignant types, Maggioni et al.84

provided evidence that with a hyperspectral microscope, the
H&E-stained microarray sections of the colon tissue could be
classified into normal, benign (adenoma), and malignant
(carcinoma).

Traditional microscope has a limited field of view; therefore,
multiple images must be taken and tiled together to form a com-
plete image of the entire tissue specimen, which is time-consum-
ing and can introduce artifacts in the composite image. To
address these issues, Constantinou et al.124 developed a confocal
scanning macroscope integrated with a prototype HSI mode to
detect fluorescently labeled antibodies and remove autofluores-
cence in paraffin-embedded, formalin-fixed tissues with linear
unmixing method. The system was evaluated in the xenograft
tissue of a mouse model with human colonic adenocarcinoma.
The prototype MHSI had the ability to simultaneously image
multiple fluorescently labeled tissue-specific markers in large
biological samples in a time- and cost-efficient way.

5.1.2 Heart and circulatory pathology

Heart disease continues to be the leading cause of death for both
men and women in the United States. Each year, one in every
four deaths in the United States is caused by heart disease. HSI
has been explored in heart and circulatory pathology both in vivo
(animal and human studies) and in vitro.

In vivo study. Peripheral arterial disease (PAD) involves the
atherosclerotic occlusion of the arterial circulation to lower
extremity,172 which may lead to rest pain, lower extremity ulcer-
ation, and even limb amputation.151 Effective diagnostic and
prognostic technologies are necessary for earlier detection
and treatment to avoid unnecessary complications and interven-
tions. However, traditional methods, such as ankle-brachial
index, Doppler waveform analysis, segmental limb pressure,
etc., did not provide high specificity and sensitivity for the pre-
diction of the healing of tissue loss in PAD patients.151 HSI
has the capacity of noninvasively measuring oxyhemoglobin
and deoxyhemoglobin concentrations to create an anatomic
oxygenation map.173,174 Chin et al.151 scanned patients with
and without PAD with a visible HSI system and acquired the
concentration of oxyhemoglobin and deoxyhomoglobin.
Experiments showed that HSI might be useful in detecting
differences in oxygenation levels in the lower extremities of
patients with and without PAD. Their data also suggested
that HSI may be a useful tool for the diagnosis and evaluation
of patients with PAD.

In vitro study. Coronary artery disease is a leading cause of
death and morbidity worldwide.175 It arises from atherosclerosis
through a slowly progressing lesion formation and luminal
narrowing of arteries. Upon plaque rupture and thrombosis,

cardiovascular disease, such as acute coronary syndrome, myo-
cardial infarction, or stroke, is likely to happen. Thorough
knowledge of the properties of both the lesion and the adjacent
vessel wall is required for the diagnosis of atherosclerosis and
the determination of the right time for intervention, choice of
treatment, and assessment of prognosis.50 The standard method
for diagnosing and evaluating atherosclerosis is angiography,
which is limited to the detection of stenotic plaques.50

Reflectance and fluorescence spectroscopies have been explored
as diagnostic tools for atherosclerosis, such as distinguishing
fibrous plaque from healthy arterial wall,176 identifying athero-
sclerotic regions in arteries,177 and superficial foam cells in coro-
nary plaques prone to erosion in vivo.178 However, it was
observed that most of the advanced lesions had a central region
surrounded by an outer rim or shoulder-region of the plaque,
which is considered a weak spot in vulnerable lesions.50 The
spatial variation of plaque makes it difficult for conventional sin-
gle-point spectroscopic measurements to classify a plaque cor-
rectly. HSI holds great promise for diagnosis of atherosclerosis
by probing a large area of tissue under investigation and provid-
ing spectral information for each pixel in the area of interest.
Larsen et al.50 collected hyperspectral reflectance and fluores-
cence data from excised aorta samples in vitro, using both
white-light and UV illuminations. Plaque features, such as lipids
and calcifications, could be identified from white-light reflec-
tance and UV-excited fluorescence hyperspectral images, and
HSI was shown to identify the complexity and large hetero-
geneity of such plaques as compared to the histology.

5.1.3 Retinal diseases

The delicate nature of the eye usually precludes invasive biopsy
or mechanical access to the retina. Therefore, current diagnosis
of retinal disease relies strongly upon optical imaging meth-
ods.179 An HSI system is usually integrated with a fundus cam-
era to enable optical imaging of the eyes. Early in 1999, Cohen
et al.179 reported the use of HSI for mapping wavelength-
resolved reflectivity across a 2-D scene in order to quantify reti-
nal images and hence offer possibility for both early detection
and monitoring of the effectiveness of therapy. Khoobehi et al.89

attached a fundus camera to an HSI for monitoring relative spa-
tial changes in retinal oxygen saturation. The integrated system
can be adapted to measure and map relative oxygen saturation in
retinal structures and the optic nerve head in nonhuman primate
eyes. Hirohara et al.113 measured the intensities of different
wavelengths of light that were transmitted through the artery,
vein, and the area surrounding these vessels and reflected out.
A hyperspectral fundus imaging camera was used to capture and
analyze the spectral absorptions of the vessels.

Johnson et al.44 developed a snapshot HSI system with no
moving parts or NB filters in order to perform functional map-
ping of the human retina. The hemoglobin spectral signatures
provided both qualitative and quantitative oxygen saturation
maps (see Fig. 4) for monitoring retinal ischemia from either
systemic diseases, such as diabetes, or from localized retinal
arterial and vascular occlusions, which are the leading causes
of untreatable blindness. Figure 4 shows an image of the
optic disk for two healthy volunteers. The results showed a
clear distinction between veins, arteries, and the background.
Regions within vessel capillaries agreed well with the 30 to
35% oxygen saturation difference expected for healthy veins
and arteries. The saturation for most of the background spatial
locations in between the capillary regions showed a tendency to
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be within the 90 to 100% regime. This was consistent with the
subjects being healthy.44 This system is capable of acquiring
a complete spatial-spectral image cube of 450 to 700 nm
with 50 bands in ∼3 ms and without motion artifacts or pixel
misregistration. This approach is ideal for exploring the poten-
tial of retinal applications since the eye is constantly moving and
often requires snapshot camera operation.

Age-related macular-degeneration (AMD) is a major cause
of blindness in the elderly, and the prevalence of the disease
increases exponentially with every decade after age 50.180

Cell protein cytochrome-c has been identified as a key signaling
molecule in the degeneration processes and apoptosis.
Schweizer et al.121 developed an HSI system to collect spectro-
scopic data, which provided information about the oxidative
state of cytochrome-c during oxidative stress for detection of
AMD. Fawzi et al.76 applied CTIS to quantify the macular pig-
ment (MP) in a group of healthy eyes in vivo. They successfully
recovered the detailed spectral absorption curves for MP in vivo
that correspond to physically realistic retinal distributions.

5.1.4 Diabetic foot

Diabetic foot ulceration is a major complication of diabetes, and
diabetic patients have up to a 25% lifetime risk of developing
a foot ulcer.181 If untreated, diabetic foot ulcers may become

infected and require total or partial amputation of the affected
limb. Changes in the large vessels and microcirculation of
the diabetic foot are important in the development of diabetic
foot ulceration and subsequent failure to heal existing ulcers.
Greenman et al.37 used an MHSI system to investigate the hemo-
globin saturation (SHSIO2) in the forearm and foot. It was found
that tissue SHSIO2 was reduced in the skin of patients with dia-
betes. Khaodhiar et al.182 carried on a clinical study of 10 type 1
diabetic patients with 21 foot ulcer sites, 13 type 1 diabetic
patients without ulcers, and 14 nondiabetic control subjects.
MHSI predicted diabetic foot ulcer healing with a sensitivity
of 93% and specificity of 86%. Tissue oxy- and deoxyhemoglo-
bin on the upper and lower extremity distant from the ulcer were
used to quantify the tissue in the study. Yudovsky et al.183

reviewed how HSI between 450 and 700 nm could be used
to assess the risk of diabetic foot ulcer development and to pre-
dict the likelihood of healing noninvasively. Two methods were
described to analyze the in vivo hyperspectral measurements.
The first method was based on the modified Beer-Lambert
law and produced a map of oxyhemoglobin and deoxyhemoglo-
bin concentrations in the dermis of the foot. The second was
based on a two-layer optical model of skin. It could retrieve
not only oxyhemoglobin and deoxyhemoglobin concentrations,
but also epidermal thickness and melanin concentration along
with skin scattering properties. It could detect changes in the

Fig. 4 Spatial oxygen saturation maps. (a) Oxygen saturation map of 29-year-old healthy male. Vascular
separation from the background is seen as well as reasonable saturation values for veins versus arteries.
(b) Zero-order color image. (c) Oxygen saturation map of 58-year-old healthy male. (d) Zero-order color
images.44
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diabetic foot and help predict and understand ulceration mech-
anisms. In another study, the same group51 reported the use of
a hyperspectral tissue oximetry in predicting the risk of diabetic
foot ulcer formation with a sensitivity and specificity of 95 and
80%, respectively. A later study184 found that epidermal thick-
ening and decrease in oxyhemoglobin concentration could also
be detected prior to ulceration at preulcerative sites.

5.1.5 Shock

As the body’s largest and most accessible organ, the skin often
manifested changes in the systemic circulation, which is impor-
tant for the diagnosis of patients in shock. MHSI offers a new
and exciting means of measuring both the spatial and temporal
variations in skin hemodynamics.

Gillies et al.128 evaluated the ability of MHSI to depict and
quantify the cutaneous manifestations of shock using a porcine
model. Shock was induced by chest trauma followed by hem-
orrhage. Quantitative and qualitative changes were observed
in the level of skin oxygenation during shock and recovery.
A mottled pattern of oxygen saturation was observed during
hemorrhagic shock instead of during hypovolemic shock or fol-
lowing resuscitation. The study showed that noninvasive imag-
ing of skin oxygen saturation could potentially be useful in
monitoring the response of the microvasculature to shock and
subsequent treatment. Variation in cutaneous blood flow distri-
bution and hemoglobin saturation measured by MHSI may offer
new insights into the pathophysiology and treatment of shock.

Skin color changes and mottling are frequently described
signs of hemorrhagic shock (HEM). Cancio et al.40 developed
a noninvasive, noncontact HSI system to quantify and depict the
surface tissue saturation of oxygen (SHSIO2) for each pixel in a
region of interest. A study of 17 female pigs showed linear
decreases in both mean SHSIO2 and oxyhemoglobin (HbO2) val-
ues with blood loss, which were reversed by resuscitation. HSI
is a promising noninvasive and noncontact tool for quantifying
changes in skin oxygenation during HEM and resuscitation.

5.1.6 Others

By recording the variations in the percentages of oxygen satu-
ration of hemoglobin, optical methods are able to monitor the
visible and near-IR spectral properties of the blood. Zuzak
et al.105,106 measured the changes in the spatial distribution of
regional tissue oxygenation during vascular occlusion and reper-
fusion. This method was able to noninvasively visualize and dif-
ferentiate between normal and ischemic tissue. This approach
may have a variety of applications in surgical and diagnostic
procedures. In the same group, a visible-reflectance HSI system
was introduced to quantify the percentage of HbO2 as an index
of skin tissue perfusion. The HSI system demonstrated (1) a sig-
nificant decline in the percentage of HbO2 in skin tissue when
blood flow is reduced after inhibition of forearm nitride oxide
synthesis and (2) restoration of HbO2 toward basal values with
improved blood flow during inhalation of nitride oxide.185 In a
clinical study,107 the same group used a visible reflectance HSI
system to examine a model of vascular dysfunction involving
both ischemia and reactive hyperemia during tissue perfusion.
The method was based on oxyhemoglobin and deoxyhemo
globin signals from spectral images in the 525- to 645-nm
region. It was able to visualize the spatial distribution of percent-
ages of oxyhemoglobin and deoxyhemoglobin in the specific
skin tissue areas.

Another important application of HSI in histopathological
examination of tissue is a combination of hyperspectral instru-
ments with other techniques, such as microscope, macroscope,
micromachined angular filter array, or snapshot fiber bundle.
Huebschman et al.186 took advantage of the continuous spectrum
collected for each image pixel by a hyperspectral microscopy
system to scan and analyze pathology tissue samples. Those
samples were stained with four standard fluorochromes attached
to specific antibodies, typically across the wavelength range of
420 to 785 nm, with the longest wavelength markers emitting in
the spectral region where the human eye was not sensitive.
Begin et al.115 presented a wavelength-swept approach to coher-
ent anti-Stokes Raman scattering microscopy. The system was
especially well suited for experiments on thick tissue, where
scattering played an important role. It bridged an important
gap between fundamental research microscopy tools and clini-
cally useful instruments by combining the context of imaging
with the richness of spectroscopic information. Vasefi et al.187

proposed an innovative MHSI technology called angular
domain spectroscopic imaging that retained submillimeter spa-
tial resolution as well as high spectral resolution through tissue
specimens up to 3 mm thick (cross-section diagram of tissue
sample is shown in Fig. 5). Khoobehi et al.188 developed an
innovative snapshot HSI system that detected the whole spec-
trum of hemoglobin using the single light exposure capability
of a fundus camera. It was able to record the hemoglobin sig-
nature of the retinal arteries, veins, and retina tissue. Sowa
et al.127 revealed that differences in tissue reflectance correlates
with the varying degrees of tissue perfusion immediately follow-
ing surgical elevation of the reversed McFarlane skin flap.

5.2 Surgical Guidance

The success of surgery highly depends on a surgeon’s ability to
see, feel, and make judgments to identify the lesion and its mar-
gins.189 MHSI holds the potential to extend a surgeon’s vision at
the molecular, cellular, and tissue levels. The ability of MHSI as
an intraoperative visual aid tool has been explored in many
surgeries.

First, MHSI could help surgeons to visualize the surgical bed
under the blood. Visual inspection is critical in microsurgery.
However, the inevitable presence of blood spilling over the sur-
gical field is a large visual obstacle to a successful surgery.
Therefore, NIR HSI spectrograph was utilized to visualize
tissues submerged in a blood layer that could not be seen with
the naked eye.93,190

Second, MHSI could facilitate residual tumor detection.45

Surgery remains the foundation of cancer treatment, with the
central objective of maximizing the removal of the tumor, with-
out harming adjacent normal tissue. However, cancerous tissue
is often indistinguishable from healthy tissue in the operating
room, which leads to the high mortality rates from recurrent
tumors. The rationale of residual tumor detection by MHSI
lies in the fact that MHSI is able to distinguish the spectral
difference of the normal and cancerous tissue in nearly real
time during the procedure.45

Third, MHSI could monitor the tissue oxygen saturation
during surgery. Tissue blood flow or oxygenation is a positive
indicator of viable tissue, which might be otherwise sacrificed
when removing tumor with little guidance. It has been shown in
Ref. 191 that HSI could monitor the tissue at a rate of 3 frames
per second and, thus, could detect dynamic changes in blood
flow and capture unexpected events during surgery.
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Finally, MHSI could enable the visualization of the anatomy
of vasculatures and organs during surgery. MHSI has the capac-
ity of real-time imaging, which enables the surgeon to make or
confirm diagnosis and evaluate surgical therapy in an ongoing
fashion in the operation room.189

Overall, MHSI has been explored in surgeries, such as
mastectomy,45 gall bladder surgery,192 cholecystectomy,54,133

nephrectomy,193,194 renal surgery,80,191,193,195,196 abdominal
surgery,95 and intestinal surgery.91 The following section will
introduce these researches in details.

5.2.1 Mastectomy

Although ∼45% of patients with breast cancer undergo primary
surgical treatment with mastectomy, the rates of complete resec-
tion remain surprisingly low and re-excision rates in breast lum-
pectomy have been reported to be as high as 40% in some
studies.197 Residual tumors that were not apparent to the surgeon
at the time of the procedure were often found at the margin of
the resected specimen. Therefore, intraoperative assessment of
residual tumor is critical for complete resection. Panasyuk
et al.45 successfully detected residual tumors of 0.5 to
1.0 mm intentionally left in the operative bed (see Fig. 6) during
an intraoperative experiment using MHSI in a rat breast-tumor
model. The rat breast tumors were first exposed and imaged by

MHSI, then partially resected, and imaged again with MHSI.
They successfully identified and differentiated tumors, blood
vessels, muscle, and connective tissue by MHSI. A sensitivity
of 89% and a specificity of 94% for the detection of residual
tumors, comparable to that of histopathological examination
of the tumor bed, were reported. With the aid of MHSI,
more extensive resection and more effective biopsy locations
may be identified. The complete resection of tumor tissue
and the conservation of normal tissue may improve surgery
outcome, preservation of organ function, patient satisfaction,
and quality of life.

5.2.2 Gall bladder surgery

Diseases of the gall bladder, such as symptomatic gallstones and
other gallbladder conditions, often require the surgical removal
of the gall bladder, i.e., cholecystectomy, one of the most com-
monly performed surgeries in the United States. Standard sur-
gical procedure is a closed laparoscopic cholecystectomy. The
procedure involves several small incisions in the abdomen with
diameters of 5 to 10 mm. Surgical instruments and a video cam-
era are placed into the abdominal cavity. In this case, surgeons
lost tactile feedback, and the conventional video camera through
an endoscope to identify the biliary tree had limited image con-
trast. Therefore, Zuzak et al.46 developed an endoscope-based

Fig. 5 (a) Cross-section diagram of tissue sample for angular-domain spectroscopic imaging testing.
(b) Color photographs of mouse tumor tissue sandwiched between two glass slides. The opening
due to the black mask that was used for transmission imaging is marked by the yellow dashed line.
The black line (left panel) indicates the location of bone embedded in the tissue. (c) Normalized spectra
from regions of tumor and muscle tissue [as indicated in (b)]. (d) Correlation map of data cube based on
reference spectral signature related to the muscle tissue. (e) Correlation map of data cube based on
reference spectral signature related to the tumor tissue.187
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HSI system to identify the anatomy and molecular content of
tissue during a laparoscopic surgery on swine. The study
showed the utility of near-IR laparoscopic HSI for noninvasive
interrogation and identification of tissues based on their chemi-
cal composition in a real-time intraoperative manner and with-
out radioactive contrast agent. They found that lipids absorbing
light at 930 nm could be used as an inherent biomarker for im-
aging the lipid-containing bile ducts connecting the gall bladder,
the location of which the surgeon needs to identify before cut-
ting during cholecystectomy. In order to help surgeons delineate
the hepatoduodenal ligament anatomy to avoid causing serious
harm to the biliary tree, they133 also built a laparoscopic-capable,
near-IR, HSI system for intraoperative biliary imaging in a pig,
which enabled surgeons to see through the hepatoduodenal
ligament and visualize the anteriorly placed biliary system.

They again confirmed the common duct-reflected spectra of por-
cine biliary structures to have a characteristic lipid shoulder at
930 nm and a strong water peak at 970 nm. Venous structures
had absorption peaks at 760 nm (deoxyhemoglobin), 800 nm
(oxyhemoglobin), and 970 nm (water). Arterial vessels had
absorption peaks at 800 and 970 nm, which would be expected
for oxyhemoglobin and water. Therefore, arterial vessels,
venous structures, and bile ducts can be visualized through
the hepatoduodenal ligament connective tissue during closed
laparoscopic procedures.

In an ex vivo tissue study, Mitra et al.54 used both reflectance
and fluorescence imaging to scan the biliary structure and
implemented advanced spectral analysis and image-processing
algorithms to classify the tissue types and to identify the biliary
anatomy. While fluorescence imaging provided dynamic

Fig. 6 (a) Photomicroscopic and corresponding medical hyperspectral imaging image from breast
tumor in situ (4 × 3 cm) (upper left and upper middle panels). Resected tumor and surrounding
tissue (5 × 7 mm) was stained with hematoxylin and eosin and evaluated by histopathology after
resection. Microscopic histological images with further resolution are displayed (right panels).
(b) Representative examples of normal tissue (grade 0), benign tumor (grade 1), intraductal carcinomas
(grade 2), papillary and cribriform carcinoma (grade 3), and carcinoma with invasion (grade 4) are
represented.45

Fig. 7 (a) Photographic image of the biliary tissue structure. (b) Classification of the biliary tissue types
based on hyperspectral imaging, superimposed with the fluorescence image of the encapsulate indoc-
yanine green-loaded microballoons. The dual-mode image clearly identifies the biliary anatomy and its
relative location with respect to the surrounding tissue components.
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information on movement and flow in the surgical region of
interest, data from HSI allowed for identification of the bile
duct (see Fig. 7) and safe exclusion of any contaminant fluores-
cence from tissue that was not part of the biliary anatomy.

5.2.3 Renal surgery

Although open partial nephrectomy (OPN) is considered the
gold-standard treatment for small (<4 cm) renal cortical
tumors,198 laparoscopic partial nephrectomy (LPN) is also
reported to achieve long-term oncologic outcomes comparable
to those for OPN. To minimize the renal injuries caused by
ischemia during surgery, it is very important to monitor renal
response to ischemia in real time. Holzer et al.193 reported
the first experiment with a digital light processing (DLP)-
based HSI system covering 520 to 645 nm for hemoglobin to
noninvasively measure renal parenchymal HbO2 saturation
and to determine the kidney response to hilar occlusion during
OPN. Olweny et al.194 recently conducted another clinical study
in 18 patients utilizing a DLP-based HSI to characterize renal
oxygenation during robotic-assisted LPN. The laparoscopic
HSI system successfully characterized dynamic changes in
renal oxygenation during LPN.

Renal hypothermia is often induced to lower the metabolic
rate and to protect renal function during OPN, while warm
ischemia is used for LPN because there is no efficient and effec-
tive method for inducing renal hypothermia laparoscopically.199

Using a digital light projection HSI system, Tracy et al.200

demonstrated that renal artery-only occlusion had a preliminary
benefit to the postoperative glomerular filtration rate after warm
ischemia during LPN in a porcine model.

To make HSI practical for real-time surgical use, Zuzak
et al.80,191,195,196 proposed to use a DLP-based HSI system
that successfully visualized chemical composition of in vivo tis-
sues during renal surgical procedures noninvasively at near
video rate. The DLP HSI system used a programmable digital
micro-mirror device capable of generating three processed
images per second and allowing the surgeon to visualize chemi-
cal changes within fractions of a second. This overcame the pri-
mary limitation of traditional wavelength-scanning methods that
collected data on physiological changes in minutes. To compare
the capacity of the DLP NIR HSI system with that of the existent
LCTF NIR HSI, Zuzak et al.80 performed studies on a porcine
kidney during renal artery occlusion. The major difference
between the two systems was their light source. Broadband
light was discriminated into individual wavelengths in the
LCTF system, which was replaced by the DLP light source

to illuminate the tissue using predetermined spectra. It turned
out that these two systems captured nearly identical spectra
for the surface of the kidney. In 2010, Zuzak et al.196 tested
the robustness of DLP HSI during OPN and other surgeries.
The study showed the potential of DLP HSI in surface disorders
visible at or near the surface of the skin to in vivo tissue monitor
during surgery.

5.2.4 Abdominal surgery

Intestinal ischemia refers to a diminished intestinal blood flow,
which compromises the delivery of oxygen and leads to the
accumulation of deoxygenated blood and waste products.
These conditions result in cell death and necrosis, leading to
inflammation and ulcers. Due to the anatomical variations
and unpredictable nature of surgeries, visibility is critical to cor-
rectly diagnose these problems during surgery. MHSI was able
to distinguish differences among different tissues and organs
and, therefore, allow surgeons to visualize and examine
a vast area less invasively without actually removing tissue.
Akbari et al.47,91,92 reported the use of MHSI as a visual support-
ing tool to detect intestinal ischemia and anatomy of organs
through abdominal surgery on pigs. They identified a key
wavelength range of 765 to 830 nm, which provided the best
differentiation between normal and ischemic intestine. Spleen,
colon, small intestine, urinary bladder, and peritoneum were
segmented based on their unique spectral signatures (see Fig. 8).
It was demonstrated that MHSI could help surgeons visualize
the anatomy of blood vasculature, and differentiate between
the artery and vein during abdominal surgeries.95

6 Discussions
Over the past 25 years, various studies have shown the exciting
potential of HSI techniques in medical applications. Based on
the technology by NASA for space exploration and Earth obser-
vation, HSI acquires datasets that consist of 2-D images of spa-
tial information and one spectral dimension at each pixel. HSI
images offer more wavelength channels than RGB images taken
by the ordinary color camera; therefore they may carry more
useful information than RGB images. Differences that appear
subtle to the human eye could be significant when looking at
the detailed spectra. In addition, wavelengths such as UV and
SWIR, which are invisible to the human eye, can be captured
and analyzed by HSI, and can potentially reveal information
that cannot be seen by the naked eye.

MHSI is a noninvasive, and nonionizing technology, which
provides a quantitative way of solving medical problems, and it

Fig. 8 The RGB image is shown on the left side. Using the method described, the segmented image can
be viewed on the right side. Spleen is shown in red, peritoneum in pink, urinary bladder in blue, colon in
green, and small intestine in yellow.
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may change the medical world in many ways. With the appli-
cation of MHSI in the exploration of anatomy, physiology, and
pathology, human vision has been extended into IR and near-IR
wavelength regions. Due to the noninvasive nature, MHSI can
be used for optical biopsy, which involves in vivo diagnosis of
tissue without the need for sample excision and processing.201

Blood volume is generally considered to increase during angio-
genesis, and changes in blood oxygenation can be correlated
with tumor metabolic activities.42 Therefore, MHSI can be
employed to map the spatial and temporal relationship of the
data and fully grasp the significance of blood oxygen delivery
and hypoxia at microvascular levels during tumor growth and
angiogenesis.76 MHSI is also able to visualize chemical contents
of vessels and organs, and monitor tissue blood volume and oxy-
genation during surgery. The use of MHSI does not require
introduction of agents, which is advantageous compared to im-
aging techniques that require contrast agents. Moreover, MHSI
is able to provide us with real-time data interactively,189 which
enables its usage during surgical procedures.

However, the application of MHSI can be limited because it
examines only areas of tissue near the surface. The optical pen-
etration depth is defined as the tissue thickness that reduces the
light intensity to 37% of the intensity at the surface. For a typical
person, the optical penetration depth is 3.57 mm at 850 nm
and 0.48 mm at 550 nm. While spectral signatures have little
dependence on skin temperature over the NIR region, measured
radiance in the thermal infrared (8 to 12 μm) has a strong
dependence on skin temperature.202 MHSI can also be limited
by the cost of HSI imaging systems and by the ability to extract
relevant information from large datasets.

HSI combines spectroscopy with imaging, capturing both the
spectral and spatial information of biological samples under
investigation and providing spatial mapping of parameters of
interest in a noninvasive manner. Spectroscopy is a point-meas-
urement method that measures only a limited number of points,
so that the derived optical properties may be biased by local
tissue inhomogeneities and important diagnostic information
could be missed. Pressure caused by the contact probe may
also affect the optical properties due to the altered local
blood content, etc.203 Although spectroscopy has been explored
extensively for probing molecular, cellular, and tissue proper-
ties204–206 and characterizing correlation of tissue parameters
with disease state,207 such fundamental research has not been
investigated vigorously in HSI. Therefore, fundamental research
about the biological rationale of MHSI is necessary, and spec-
troscopy can be used to validate HSI systems. It was argued that
cross-talk between spatial locations could occur when extending
to HSI, and the information extracted from one location might
be influenced by neighboring locations.208 Martin et al.83 com-
pared the average hyperspectral fluorescence over an area with
a value obtained for one point on the tissue surface obtained by
spectroscopy. They found that the major peaks were consistent
between the HSI data and spectroscopic data.

HSI technology is an indirect strategy to extract a spatial
map of optical properties within the tissue since it deduces
the interaction coefficients from measurements of reflectance
and transmittance.209 This is an ill-posed inverse problem with
no unique solution.210 It is possible for two media of substan-
tially different optical properties to yield very similar optical
measurements, such as the diffuse reflectance and transmit-
tance.209 In practice, it is difficult to eliminate the ambiguities
of matching spectral profiles with biological samples, and

therefore, the presence of the fundamental nonuniqueness is
another limitation of HSI.

HSI can measure significant amounts of spectral information
from a large area of tissue. Most literature reported the feasibil-
ity of a certain MHSI application without in-depth analysis of
the image data obtained. Some results may suffer from a lack of
generality because the image datasets are usually constrained to
a specific instrument. Therefore, accessible, accurate, and up-to-
date spectral databases of tissues, cells, and molecules for vari-
ous diseases are needed in order to offer a valuable tool for
disease diagnosis and treatment. For example, each subtype of
renal tumors, such as clear cell, chromophobe, oncocytoma,
papillary, and angiomyolipoma, can have different morphologi-
cal and molecular characteristics and thus lead to the differences
in spectra signature. Therefore, a spectral library for renal
tumors may be able to provide the reference spectra in order
to aid the interpretation of hyperspectral images. Furthermore,
advanced data-mining methods are to be investigated in order to
fully utilize the abundant spectral and spatial information pro-
vided by MHSI.

With the increasing integration with other techniques, such
as microscope, colposcope, laparoscope, and fundus camera,
MSHI is becoming an essential part of medical imaging tech-
niques, which provides important information at the molecular,
cellular, tissue, and organ levels for potential clinical use.

7 Conclusion
HSI technology acquires a 3-D image cube with two spatial
dimensions and one spectral dimension in a noninvasive manner
and in real time. Each pixel in the hypercube can be character-
ized by a spectral curve, which can range from UV to IR region.
Spatially resolved spectra obtained by HSI provide diagnostic
information about the tissue physiology, morphology, and
composition. Furthermore, HSI can be easily adapted to other
conventional techniques, such as microscopy, fundus camera,
colposcopy, etc. As an emerging imaging technology, MHSI
has been explored in a variety of laboratory experiments and
clinical trials, which strongly suggested that HSI has a great
potential for improving accuracy and reliability in disease detec-
tion, diagnosis, monitoring, and image-guided surgeries.

Three major challenges confront the development and appli-
cations of HSI technology. The first challenge is the acquisition
of high-resolution HSI datasets in video rates. Real-time acquis-
ition will facilitate intraoperative imaging of the organs, tissues,
cells, and molecular biomarkers of interest. Higher spectral and
spatial resolution and a larger database of tissue spectra will pro-
vide more spatial and spectral information and may potentially
capture more subtle spectral and spatial variations of different
tissue types.

The second challenge involves the fast processing of the vast
amount of datasets acquired by HSI, including the extraction
of the high-quality diagnostic information, and generation of
a quantitative map of different tissue types as well as disease-
specific endogenous substances. Advanced classification
algorithms will enable better differentiation between healthy,
premalignant, and malignant tissue, and more precise delinea-
tion of cancer margins for image-guided biopsy and surgery.
Advanced spectral unmixing algorithms offer insight into the
correlation between intrinsic biomarkers and disease states,
and facilitate the identification of biomarkers for early cancer
detection by recovering subpixel compositional information.
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The third challenge lies in the establishment of a large spectra
database for important molecular biomarkers and all types of
tissue, including skin and subcutaneous tissue, ocular tissue,
head/brain tissue, epithelial/mucous tissue, breast tissue, carti-
lage, liver, muscle, aorta, lung, myocardium, etc. Such a data-
base will make it possible to distinguish not only between
oxygenated and deoxygenated blood, but also between different
tissue types, such as bile duct and the fatty tissue surrounding
it.196 The identification of the molecular biomarkers can also
benefit early cancer detection.

During the past two decades, HSI technology has undergone
fast development in terms of hardware and systems, and has
found numerous applications in medical domain. However,
most MHSI only explores the UV, VIS, and NIR regions of
light. Exploration of HSI on disease detection, diagnosis, and
monitoring in the mid-IR region may bring new insights into
the medical field. Moreover, combination with other imaging
modalities, such as preoperative positron emission tomography
and intraoperative ultrasound, can leverage the key benefits of
each technique individually, overcome the penetration limitation
of HSI into biological tissue,211 and broaden the application
fields of HSI. In clinical settings, HSI can be easily adapted
to conventional diagnostic tools, such as endoscope, colpo-
scope, etc., to meet demanding requirements by various medical
applications. Multimodal imaging combining reflectance and
fluorescence has the potential of revealing more information
about tissue under investigation. The clinical applicability of
MHSI is clearly still in its adolescence and requires much
more validation before it can be used safely and effectively
in clinics. With the advancement of hardware technologies,
image analysis methods, and computational power, we expect
that HSI will play an important role for noninvasive disease
diagnosis and monitoring, identification and quantitative analy-
sis of cancer biomarkers, image-guided minimum invasive sur-
gery, targeted drug delivery and tracking, and pharmaceutical
drug dosage assessment.
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