
 

 

Quantitative Diagnosis of Tongue Cancer  
from Histological Images in an Animal Model  

 
Guolan Lu1, Xulei Qin2, Dongsheng Wang3, Susan Muller4, Hongzheng Zhang4,  

Amy Chen4, Zhuo Georgia Chen3, Baowei Fei 1,2,5,6 * 

1 The Wallace H. Coulter Department of Biomedical Engineering, 
Georgia Institute of Technology and Emory University, Atlanta, GA; 

2 Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA; 
3 Department of Hematology and Medical Oncology, Emory University, Atlanta, GA; 
4Department of Otolaryngology, Emory University School of Medicine, Atlanta, GA; 

5 Department of Mathematics & Computer Science, Emory University, Atlanta, GA; 
6 Winship Cancer Institute of Emory University, Atlanta, GA 

*E-mail: bfei@emory.edu ; Website:  http://feilab.org 

ABSTRACT   

We developed a chemically-induced oral cancer animal model and a computer aided method for tongue cancer 
diagnosis. The animal model allows us to monitor the progress of the lesions over time. Tongue tissue dissected 
from mice was sent for histological processing. Representative areas of hematoxylin and eosin (H&E) stained 
tissue from tongue sections were captured for classifying tumor and non-tumor tissue. The image set used in this 
paper consisted of 214 color images (114 tumor and 100 normal tissue samples). A total of 738 color, texture, 
morphometry and topology features were extracted from the histological images. The combination of image 
features from epithelium tissue and its constituent nuclei and cytoplasm has been demonstrated to improve the 
classification results. With ten iteration nested cross validation, the method achieved an average sensitivity of 
96.5% and a specificity of 99% for tongue cancer detection. The next step of this research is to apply this 
approach to human tissue for computer aided diagnosis of tongue cancer.  
 

Keywords: Tongue cancer diagnosis, squamous cell carcinoma, 4NQO-induced oral cancer, random forest, 
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1. DESCRIPTION OF PURPOSE 

More than half a million patients are diagnosed worldwide with squamous cell carcinoma (SCC) of the head and 
neck each year [1]. Only half of the people diagnosed with oral cancer live for 5 years. Current gold standard for 
cancer diagnosis is made by pathologists using visual examination of haematoxylin and eosin (H&E) stained 
sections  under the microscope [2]. The diagnosis and grading of oral epithelial dysplasia is based on a 
combination of architectural and cytological changes. Specifically, the histological features for cancer diagnosis 
mainly include: 1) the proliferation of immature cells characterized by a loss of cellular organization or polarity, 
2) variations in the size and shape of the nuclei, 3) increase in nuclear size relative to the cytoplasm, 4) increase 
in the nuclear chromatin with irregularity of distribution, and 5) increased mitoses, including atypical forms in 
all epithelial layers [3]. The locations of the architectural and cytomorphologic changes within the epithelium 
represent key diagnostic parameters. However, the effectiveness of cancer diagnosis is highly dependent on the 
attention and experience of pathologists. This process is time consuming, subjective, and inconsistent due to 
considerable inter- and intra-observer variations [4]. Therefore, a computer-aided image classification system 
with quantitative analysis of these histological features is highly desirable to provide rapid, consistent and 
quantitative cancer diagnosis. 
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The development of quantitative analysis methods for oral cancer diagnosis purposes is still in its early 
stage. Only a few studies have been conducted to quantify the oral tissue architectural and morphological 
changes. Landini et al. [5] measured statistical properties of the graph networks constructed based on the cell 
centroids for classifying normal, premalinant and malignant cells, and reported an accuracy of 67%, 100% and 
80% to identify normal, premalignant and malignant cells, respectively. Krishnan et al. [6] explored the 
potential of texture features to grade the histopathological tissue sections into normal, oral sub-mucous fibrosis 
(OSF) without dysplasia, and OSF with dysplasia, and reported an accuracy of 95.7%, a sensitivity of 94.5%, 
and a specificity of 98.8%. Recently, Das et al [7] proposed an automated segmentation method for the 
identification of keratinization and keratin pearl from oral histological images and achieved a segmentation 
accuracy of 95.08% in comparison with the manual segmentation ground truth.  

In this study, we developed a predictive model that combines multiple features, such as color, texture, 
morphormetry, and topology features from epithelium tissue and its constituent nuclei and cytoplasm, for the 
diagnosis of tongue cancer. We evaluated the effectiveness of the proposed features with multiple classifiers and 
performance metrics.  

2. MATERIALS AND METHODS 

2.1 Tongue Carcinogenesis Animal Model 

Six-week-old female CBA/J mice were purchased from the Jackson Laboratory and were used for the studies. 
Animals were housed in the Animal Resource Facility of our institution under controlled conditions and fed 
sterilized special diet (Teklad global 10% protein rodent diet, Harlan) and autoclaved water. 4-NQO powder 
(Sigma Aldrich, St. Louis, USA) was diluted in the drinking water for mice. The water was changed once a 
week. Mice were allowed access to the drinking water at all times during the treatment. Mice were randomly 
divided into an experimental group and a control group.  In the experimental group, the drinking water 
contained 4-NQO while no 4-NQO was added into the water in the control group. Mice in the experimental 
group were administered 4NQO (Sigma) at 100 µg/ml in their drinking water on a continuous basis for 16 
weeks to induce epithelial carcinogenesis. The body weights of the mice were measured once a week to monitor 
the tumor burden. Mice were euthanized at different time points (weeks 12, 20, 24) to track different 
pathological grades.  

2.2 Data Acquisition 

Immediately after the euthanasia of the mice, the mouse tongues were dissected and kept in 10% formalin 
overnight. Tongue tissue from both 4NQO-treated and control groups were embedded in paraffin, and sectioned 
vertically down the dorsal surface into 5 µm sections. Tissue samples were stained with hematoxylin and eosin 
(H&E). The H&E slides were then digitized and reviewed by an experienced pathologist specialized in head and 
neck cancer, who segmented the section into pathological regions of normal, dysplasia, carcinoma in situ, and 
squamous cell carcinoma. The images were captured at 20× magnification using the Aperio ImageScope 
software (Leica Biosystems) producing 1472 × 922-pixel color images. Some example images were shown in 
Figure 1. 

 
Figure 1. Example images of H&E stained pathological samples. (a) Healthy tissue. (b) Dysplastic tissue. (c) Carcinoma in 
situ.  
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2.3 Overview of the Computer Aided Diagnosis Approach 

The flowchart of the proposed method is shown in Figure 2. First, the histological RGB image was segmented 
into epithelial layer, connective tissue and background. In clinical practices, the diagnosis of precursor lesions is 
based on the altered epithelium with an increased likelihood for progression to squamous cell carcinoma [8]. 
This step is to pre-process histological images for diagnosis. Second, the segmented nuclei image was further 
separated into nuclei, cytoplasm and background. Next, multiple features were extracted from both the whole 
epithelial image and its components (nuclei, cytoplasm). Finally, feature selection and supervised classification 
method with nested cross validation is conducted to build predictive models for cancer diagnosis.  

 
Figure 2. Flowchart of the proposed computer aided diagnosis method.   

2.4 Segmentation of Epithelial Layer  

The first step in the analysis pipeline was the segmentation of the epithelium tissue from the connective tissue, 
muscle and image background. Figure 3 shows that image of the red channel exhibits the best contrast for 
separating epithelium from connective tissue. Figure 4 is the smoothed red image with edge-preserving 
decomposition [9], which generated an image with less noise and it is easy to binarize. Next, global thresholding 
was applied on the smoothed red image to obtain the mask of the epithelial layer. Green, blue and grayscale 
images have all been tested for thresholding, but none of them generated better results than the red image. The 
connected component with the largest area was kept on the image. In some cases, the epithelial layers may be 
disconnected after thresholding. So the first few connected components with the largest area were retained. On 
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the initial nuclei mask, small spurious background regions were cleaned by morphological opening with a disk 
radius of 5. The generated mask was used as initialization for the Chan-Vese active contour algorithm, which 
smoothed the segmentation mask.  

 
Figure 3. Comparison of difference grayscale images for epithelial layer segmentation. (a)-(d) are the luminescence image 
from HSV color space, red channel, green channel and blue channel of RGB color space, respectively. (e)-(h) are the 
corresponding image to (a)-(d) after edge-preserving smoothing and global thresholding. 

 
Figure 4. Segmented epithelial layer. (a) Separated epithelium after the morphological processing of the mask in Figure 3 (f). 
(b) The boundary of the epithelium smoothed by active contour shown in green.  

2.5 Nuclei and Cytoplasm Segmentation 

Epithelial cell nucleus absorbs the haematoxylin which is a dark blue or violet stain, while eosin is absorbed by 
the cytoplasm which is a red or pink stain. So the colors consisting white, blue and pink in the histological 
image allows a clear distinguishing between different cellular components within the epithelium. To quantify 
these visual differences, RGB images were converted to the CIELab color space, which consists of a luminosity 
layer L, chromaticity-layer ‘a’ indicating where color falls along the red-green axis, and chromaticity-layer ‘b’ 
indicating where color falls along the blue-yellow axis. Since all of the color information is in the a and b layers, 
K-means clustering was applied on these two layers to segment the image into two or three clusters (nuclei, 
cytoplasm and background) using the Euclidean distance.  

To better segment the nuclei out, global thresholding was performed on the red channel of the segmented nuclei 
image from clustering. Morphological opening with a disk radius of 1 was used to remove small spurious 
objects. Connected components with more than 25 pixels were also discarded. At this point, pure nuclei images 
were produced, but some nucleus were overlapping. So we identified the multi-nucleus with solidity lower than 
0.85 and performed watershed segmentation to separate the touching cells. The single nuclei mask and separated 
multi-nucleus m were combined to form the final mask of the epithelial nuclei. 
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2.6 Feature Extraction  

Multiple features were extracted from the epithelium, nuclei, and cytoplasm image. It has been shown in 
previous study that removing white pixels could improve the classification performance [10].  This is obtained 
by first transforming the image from the RGB color space into the YCbCr space and then applying the threshold 
to the luminance (Y) component. A threshold value 180 was used in this stage. 

A key morphological change in dysplasia is the loss of stratification, due to a lack of normal maturation from 
the cells in basement membrane to the surface keratin. Cells located in the surface layer of the epithelium have 
the same immature appearance as those in the deep basal layers [11]. To reflect these abnormal changes, we 
extracted 64 color and 293 texture features from each epithelium image and each cytoplasm image respectively. 
Color features include 16-bin transformed RGB histogram and red-blue histogram difference. The RGB 
histogram itself is sensitive to photometric variations. However, the transformed RGB histogram has scale-
invariance and shift-invariance with respect to light intensity [12].  Texture features include the Haralick feature 
[13], local binary pattern [14] and fractal textures [15]. 

   The variations in the size and shape of the cells and of the nuclei are characteristics of oral dysplastic changes. 
Cancer nuclei have an increased nuclear to cytoplasmic ratio compared to normal nuclei. To quantify these 
changes, we extracted 24 color, morphometric and topological features from each nuclei image. Color features 
include the mean, standard deviation, minimum, and maximum of the red, green, and blue channel. 
Morphometric features include the area, ratio of the major to minor axis, shape (solidity, eccentricity, and 
compactness), neighborhood radius, and the nucleus to cytoplasm ratio. Topology feature was extracted based 
on the centroids of connected components segmented in the nuclei image [16]. The number of nodes, number of 
edges, number of triangles, edge length, and cyclomatic number [17] of the Delaunay triangulation were 
selected as the topology features to characterize the distribution of individual nucleus. In summary, a total of 
738 features were extracted from each epithelium image and its constituent nuclei and cytoplasm images. 

2.7 Feature Selection 

The goal of feature selection is to find a feature set S with n feature {λ௜}, that “optimally” characterize the 
difference between cancerous and normal tissue. To achieve the “optimal” condition, we used the maximal 
relevance and minimal redundancy (mRMR) [18] framework to maximize the dependency of each feature on the 
target class labels (tumor or normal), and minimize the redundancy among individual features simultaneously. 
Relevance is characterized by mutual information I(x;	y)	, which measures the level of similarity between two 
random variables x and y: I(x; y) = ,ݔ)݌∬ (ݕ log ௣(௫,௬)௣(௫)௣(௬)  (1)                                                              ݕ݀ݔ݀

where ݔ)݌, (ݕ  is the joint probability distribution function of x and y, and (ݔ)݌  and (ݕ)݌  are the marginal 
probability distribution functions of x and y respectively. 

We represent the feature of each pixel with a vector λ = ሾλଵ, λଶ, … , λ௜ሿ,	i	=	738, and the class label (tumor or 
normal) with c. Then the maximal relevance condition is: maxݏ)ܦ, ܿ), ܦ = ଵ|ௌ| ∑ ,λ௜)ܫ ܿ)஛೔∈ௌ                                                                     (2) 

The features selected by maximal relevance is likely to have redundancy, so the minimal redundancy condition 
is used to select mutually exclusive features: maxܴ(ݏ), ܴ = ଵ|ௌ|మ ∑ ,λ௜)ܫ λ௝)஛೔,஛ೕ∈ௌ                                                                     (3) 

So the simple combination (equation (5) and (6)) of these two conditions forms the criterion “minimal-
redundancy-maximal-relevance” (mRMR). max(ܦ − ܴ)                                                                                        (4) 

i.e.  
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max(∑ ,λ௜)ܫ ܿ)஛೔∈ௌ − ଵ|ௌ| ∑ ,λ௜)ܫ λ௝)஛೔,஛ೕ∈ௌ )                                                                 (5) 

 

2.8 Model Development 

The image set used for tumor/non-tumor classification consisted of a total of 214 images (114 tumor and 100 
normal images). 738 features described in Section 2.6 were extracted from each image. To avoid the curse of 
dimensionality in supervised classification, we performed feature selection and built predictive models through 
nested cross validation (CV) consisting of 10 iterations of five-fold outer CV and 10 iterations of four-fold inner 
CV. The outer CV loop was used to estimate the classification performance; and the inner CV loop was used to 
tune the optimal parameters for the model development. For the stratified five-fold outer CV, the whole dataset 
was randomly split into five sets of roughly equal sizes. Splitting was performed such that the proportion of 
images per class was roughly equal across the subsets. Each run of the outer five-fold CV algorithm consisted of 
training models on four image subsets and testing on the remaining subset. A stratified four-fold inner CV was 
conducted to select the optimal feature numbers from three subsets of the training data and to validate the model 
using the remaining subset. Six different classifiers, including support vector machine (SVM) [19], random 
forest (RF) [20], Naive Bayes, linear discriminate analysis (LDA) [21], k-nearest neighbors (KNN) [22], and 
decision trees (DT) [23], were compared for classification.  

2.9 Performance Evaluation 

Following imaging experiments, tissue specimens were fixed in 10% formalin and then paraffin embedded. 
Each tongue specimen was sectioned into a series of 5 µm tissue sections with 100 µm intervals between 
sections. Each tissue section represented one longitudinal line parallel to the midline on the dorsal surface of the 
tongue. The H&E slide from each section was reviewed by an experienced head and neck pathologist, who 
segmented the section into regions of normal, dysplasia, carcinoma in situ and carcinoma as our gold standard. 
Receiver operating characteristic (ROC) curves, the area under the ROC curve (AUC), accuracy, sensitivity, 
specificity, positive predictive value (PPV) and negative predictive value (NPV) were used as metrics to assess 
the performance of supervised classification [24] [25] [26].    

3. RESULTS AND DISCUSSIONS  

Figure 5 shows an example of the segmentation results. From visual assessment, the segmentation results of the 
epithelium, nuclei and cytoplasm were satisfactory. 

 
Figure 5. Example segmentation results from a dysplasia image. (a) Input H&E pathological image. (b) Segmented epithelial 
layer. (c) Segmented nuclei image. (d) Segmented cytoplasm image. 
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To compare image-level features with object-level features, we first performed a stratified five-fold cross 
validation on all the dataset with different feature types. Table 1 shows the classification results of six classifiers 
for cancer diagnosis with features extracted from the epithelium image alone.  Table 2 shows the classification 
with features extracted from individual objects (nuclei and cytoplasm). Table 3 shows the classification with 
features extracted from both the whole image and individual objects (nuclei and cytoplasm). From these tables, 
we found that the combination of image-level and object-level features outperformed image-level features alone 
and object-level features alone. This indicated that image-level and object-level features contained 
complementary information for cancer diagnosis. SVM was the best performing classifier, with an average 
sensitivity of 96.5% and specificity of 99.0%.  

Table 1. Comparison of different classifiers for cancer diagnosis using image-level features alone 

Classifier AUC Accuracy Sensitivity Specificity PPV NPV 

SVM 0.955     86.9% 89.5% 89.0% 85.1% 89.0% 

Random Forest 0.924     85.1% 84.3% 91.0% 79.9% 91.0% 

Naive Bayes 0.852     72.8% 81.5% 81.0% 62.6% 84.0% 

KNN 0.818     81.8% 81.7% 82.0% 81.7% 82.0% 

Decision Tree 0.808     58.5% 82.5% 80.0% 31.1% 90.0% 

LDA 0.786     78.5% 78.2% 79.0% 78.2% 79.0% 
 

Table 2. Comparison of different classifiers for cancer diagnosis using object-level features alone 

Classifier AUC Accuracy Sensitivity Specificity PPV NPV 

SVM 0.985     93.0% 93.0% 98.0% 88.6% 98.0% 

Random Forest 0.966     89.7% 91.2% 93.0% 86.8% 93.0% 

KNN 0.889     88.8% 87.7% 90.0% 87.7% 90.0% 

LDA 0.857     85.5% 83.3% 88.0% 83.3% 88.0% 

Decision Tree 0.850     69.2% 85.1% 86.0% 49.4% 92.0% 

Naive Bayes 0.835     79.4% 88.6% 74.0% 84.2% 74.0% 
 

Table 3. Comparison of different classifiers for cancer diagnosis using both image and object features 

Classifier AUC Accuracy Sensitivity Specificity PPV NPV 

SVM 0.993     95.3% 96.5% 99.0% 92.1% 99.0% 

Random Forest 0.970     89.7% 89.4% 95.0% 85.1% 95.0% 

KNN 0.923     92.1% 88.6% 96.0% 88.6% 96.0% 

LDA 0.912     91.1% 90.4% 92.0% 90.4% 92.0% 

Naive Bayes 0.869     74.8% 88.7% 82.0% 66.0% 85.0% 

Decision Tree 0.834     73.9% 82.5% 82.0% 61.7% 88.0% 
 

Figure 6 demonstrated the model performance (AUC, sensitivity, specificity) in both internal and external 
validation. X axis denotes the average cross validation model performance from four-fold inner cross 
validations, and Y axis denotes the corresponding outer fold model performance on testing dataset. It can be 
seen that the training models works well not only on training dataset but also in testing dataset, which indicated 
that the predictive models were robust and did not over-fit inner cross validation dataset. 
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Figure 6. Model performances in internal and external validations. Red points represent AUC values, green points represent 
sensitivity values, and blue points represent specificity values.  

Table 4. Most frequently selected top 10 ranking features 

Ranking Feature name Feature type Location Frequency 

1 Local binary pattern Texture Epithelium  38% 

2 Red-blue difference  Color Cytoplasm  34% 

3 Red-blue difference  Color Epithelium  54% 

4 Mean nuclei size Morphology Nuclei  28% 

5 Local binary pattern Texture Cytoplasm  28% 

6 Fractal Dimension Texture Epithelium 16% 

7 Local binary pattern Texture Cytoplasm  14% 

8 Transformed RGB Histogram Color Epithelium 16% 

9 Mean nuclei solidity Morphology Nuclei  12% 

10 Mean nuclei solidity Morphology Nuclei  10% 

 

Table 4 shows the most frequently selected features in the top 10 ranks in the cross validation. These top 
features included features from epithelium, cytoplasm as well as nuclei, which indicated the complementary 
value of image and object level features for cancer diagnosis and was consistent with the observations in Table 
1-3. Local binary pattern capturing the texture of epithelium and cytoplasm may be related to the abnormal 
changes in epithelial layer as normal tissue progresses into tumor. Red and blue channel histogram differences 
of cytoplasm and epithelium are likely associated with the increased nuclei to cytoplasm ratio in tumor tissue. 
Enlarged nuclei sizes in tumors are also highly discriminating. 
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To the best of our knowledge, this is the first time that multi-level (image and object) features, which include 
color, texture, morphometry and topology features, were extracted and combined for the improved classification 
of pathological images of tongue cancer. The animal experiment was specially designed to acquire images with 
progressing pathological grades. The proposed method was effective for the distinction of tumor and normal 
tissue.  

4. CONCLUSIONS 

In this paper, we developed a chemically-induced oral cancer animal model and designed a computer aided 
diagnosis method for the detection of the tongue cancer. We evaluated various image features from histological 
images for quantitative cancer evaluation. We found that the diagnostic performances of image-level features 
combined with object-level features outperformed image features or object features alone, which indicated their 
complementary effects. Texture feature describing epithelium structures was the most discriminating feature for 
cancer detection. The computer aided diagnosis models could provide objective and reproducible diagnosis for 
tongue cancer. The image features and quantitative analysis method can also be applied to human images for 
computer-aided diagnosis of human tongue cancer.  
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