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Superpixel-Based Segmentation for 3D
Prostate MR Images

Zhiqiang Tian, Lizhi Liu, Zhenfeng Zhang*, and Baowei Fei*

Abstract—This paper proposes a method for segmenting the
prostate on magnetic resonance (MR) images. A superpixel-based
3D graph cut algorithm is proposed to obtain the prostate sur-
face. Instead of pixels, superpixels are considered as the basic
processing units to construct a 3D superpixel-based graph. The
superpixels are labeled as the prostate or background by min-
imizing an energy function using graph cut based on the 3D
superpixel-based graph. To construct the energy function, we
proposed a superpixel-based shape data term, an appearance data
term, and two superpixel-based smoothness terms. The proposed
superpixel-based terms provide the effectiveness and robustness
for the segmentation of the prostate. The segmentation result of
graph cuts is used as an initialization of a 3D active contour model
to overcome the drawback of the graph cut. The result of 3D
active contour model is then used to update the shape model and
appearance model of the graph cut. Iterations of the 3D graph
cut and 3D active contour model have the ability to jump out of
local minima and obtain a smooth prostate surface. On our 43
MR volumes, the proposed method yields a mean Dice ratio of

%. On PROMISE12 test data set, our method was
ranked at the second place; the mean Dice ratio and standard
deviation is %. The experimental results show that the
proposed method outperforms several state-of-the-art prostate
MRI segmentation methods.
Index Terms—3D graph cuts, active contour model, superpixel,

magnetic resonance imaging (MRI), prostate segmentation.

I. INTRODUCTION

A CCURATE segmentation of the prostate from MRI is an
important step for treatment planning and many other

applications. Manual segmentation of each MR image slice is
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time-consuming and subjective, which depends on the experi-
ence and skill of the readers and can have intra- and inter-reader
variation. As a result, semi-automatic and interactive methods,
which incorporate minimal user input, become an attractive and
reasonable choice. Therefore, a semi-automatic segmentation
method with minimal user input is proposed in this work.
Although various prostate segmentation methods have been
developed for MR images [1]–[9], the accuracy and the robust-
ness of the existing methods still need to be improved in order
to meet the requirements of particular clinical applications
such as MRI/ultrasound fusion targeted biopsy that has a high
requirement on the accuracy and robustness.
Among these methods, multi-atlas based methods and de-

formable models have been used for prostate MR image seg-
mentation. For multi-atlas methods [10], [11], given multiple
atlases, a segmentation for a new prostate MR image can be es-
timated using image registration. Each atlas along with its label
is first registered to the new targeted image. Then, the warped
label images are fused to obtain the segmentation of the prostate
on the targeted image. Majority voting, simultaneous truth and
performance level estimation (STAPLE) [12], and selective and
iterative method for performance level estimation (SIMPLE)
[13] are used as the fusion methods. Xie and Ruan [14] pre-
sented a scheme to incorporate information on three levels for
automatic atlas-based segmentation. Korsager et al. [15] pro-
posed a method based on atlas registration and graph cuts for
prostate MR segmentation.
For deformable methods, a shape prior is first constructed

from training MR images. The prostate on the target MR image
is then segmented by fitting the deformable model with shape
and appearance constraints. Martin et al. [16] proposed a 3D
prostate MR segmentation method. A probabilistic map was
built by atlas matching and the result was then used to drive the
deformable segmentation. An active appearance models (AAM)
and an active shape model (ASM) were also proposed to seg-
ment the prostate onMR images [3], [17]. In Guo's method [18],
a deformable model was guided by the learned dictionaries; and
sparse shape prior was then developed to segment the prostate
on MR images.
Active contour model based methods [19], [20] have gained

considerable attention due to their promising performance. Tsai
et al. [21] presented a shape-based approach for curve evolu-
tion to segment medical images. Qiu et al. [22] proposed an im-
proved active contour method. Given a reasonable good initial-
ization, active contours have the flexibility to deform to nearby
local minima of the energy, which could achieve segmentation
with reasonable details. However, it is a non-trivial task to ob-
tain a good initialization. Therefore, an active contour model
can be trapped at local minima.
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Graph cut [23], [24] is an efficient global optimization algo-
rithm. The segmentation problem can be formulated in terms of
energy minimization. Various graph cuts based methods [25],
[26] were proposed to segment the prostate on MR images. Al-
though these methods could yield reasonable results, the output
of the graph cuts is still crude and sometimes misses fine details
since it is treated as a global optimization problem with no re-
gional image intensity constraints.
To solve these problems, several works [27]–[29] that com-

bine these two models have been introduced in the fields of
computer vision and medical imaging. Huang et al. [28] pro-
posed a method for image segmentation based on the integra-
tion of theMarkov Random field (MRF) and deformable models
using graphical models. Xu et al. [27] presented an active con-
tour based graph cuts for object segmentation. Uzunbas et al.
[29] proposed a hybrid multi-organ segmentation approach by
integrating a deformable model and a graphical model in a cou-
pled optimization framework. Although these works could ob-
tain satisfactory segmentation, they used pixel as the basic unit,
which is not suitable to handle big data of 3D volumes. In ad-
dition, these methods do not take into account the 3D infor-
mation and the connections that exist among successive slices.
Furthermore, some object regions may be missed or the object
contour may change suddenly in a particular slice due to noisy.
As the slice-by-slice method cannot handle this problem, a 3D
procedure that takes into account information in adjacent slices
should be considered.
In this work, superpixel is adopted to produce high quality

segmentations by using graph cuts, while significantly reducing
the computational and memory costs. The number of graph
nodes is drastically reduced by using superpixels instead of
pixels. Our proposed prostate segmentation method is different
from the aforementioned literatures in the following aspects: 1)
a 3D graph cuts and a 3D active contour mode are used in an
iterative manner to extract the prostate surface on MR images.
This iterative manner takes both advantages of graph cut and
active contour model, which can yield accurate segmentation
results. 2) The shape feature and gray feature are learned from
each MR volume individually. These case-specific features
further improve the accuracy. 3) Instead of pixels, superpixel is
used as basic processing unit, which yields robust segmentation
results.
The remainder of the paper is organized as follows. In

Section II, we introduce our 3D superpixel-based prostate seg-
mentation framework, followed by the details for each part of
the proposed method. In Section III, we describe the evaluation
of our method based on extensive experiments. In Section IV,
we summarize our contributions and conclude this paper.

II. METHOD

A. Overview of the Proposed Method

The proposed method consists of two parts that include graph
cuts and active contour. Fig. 1 presents an overview of the pro-
posed method.

Fig. 1. The flowchart of the proposed segmentation method.

In this work, the superpixel is used as the basic processing
unit for extracting the prostate surface. The pixels that have sim-
ilar intensities and locations in the same slice are grouped to-
gether into a superpixel, which is used to compute robust local
statistics. The usage of superpixel significantly reduces the com-
putational and memory costs without sacrificing the accuracy
due to the good adherence of superpixel to the boundary of the
object.
The superpixels are connected to each other in the volume

to form a 3D graph, which is a neighborhood system. A su-
perpixel-based shape feature and superpixel-based gray feature
are proposed to evaluate how likely a superpixel belongs to
the prostate or background. Two superpixel-based smoothness
terms are also proposed to construct the energy function. The
initial segmentation is obtained by minimizing the energy func-
tion. However, the graph cuts usually miss the fine details or leak
at the regions with weak edges. Therefore, a 3D active contour
is introduced to solve this problem.
Although the classic active contour model has been used for

medical image segmentation, it has a well-known problem of
trapping at local minima when the initialization is not good
enough, which limits its wide applications. In this work, the
output of the graph cuts is used as an initialization of the active
contour model in order to overcome this problem. The segmen-
tation of the active contour method is then used to update the
data terms of the graph cuts. Our hybrid method alleviates de-
ficiencies of these two methods. These two parts are repeatedly
performed until the energy of the graph cuts reaches the conver-
gence. Finally, the output of the segmentation is post-processed
to obtain smooth surface of the prostate.
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Fig. 2. Demonstration of the original MR images (top) and the corresponding
superpixels (middle) for the slices at the mid-gland (left), base (middle), and
apex (right) of the prostate. The region around the prostate is magnified to show
the superpixels (bottom). Each MR image contains about 1 000 superpixels.

B. Superpixel

Superpixel-based methods have many advantages for seg-
mentation. First, a small number of superpixels reduce the
computational cost and memory usage. Second, a superpixel
with more pixels makes the superpixel-based feature more
reliable and can minimize the risk of assigning wrong labels
to the superpixels. Because of its improved performance over
pixel-based methods, superpixel-based approaches [30]–[33]
has been increasingly used in the field of computer vision.
Superpixel segmentation provides an over-segmentation of an
image by grouping pixels into homogeneous clusters based on
intensity, texture, and other features. We choose superpixel as
the elementary processing unit of our segmentation method.
For our prostate segmentation task, the generation of superpixel
should meet two requirements. First, the generation of super-
pixel should be implemented efficiently. Second, the number
and the size of superpixels should be in a reasonable range,
which can be controlled by the user. From these points of view,
the Simple Linear Iterative Clustering (SLIC) method [31] is
adopted to segment each slice in order to obtain superpixels.
The SLIC method has good performance and fast speed, as
compared to other superpixel methods.
Fig. 2 shows the superpixel maps of three MR images, which

are the slices at the mid-gland, base, and apex of the prostate.
The figure demonstrates that the boundaries of superpixels cor-
respond closely to the edges of the prostate. If our algorithm can
pick up the right superpixels, the prostate boundary will be ex-
tracted properly.

C. Graph Cuts

Fig. 4 shows the flowchart of the 3D superpixel-based graph
cuts algorithm. First, the over-segmented superpixels are con-
sidered as the elementary processing units instead of pixels. The

Fig. 3. The 3D superpixel-based neighborhood system in the 3D graph cuts
algorithm. The red solid lines are inter-edges, while the blue dotted lines are
intra-edges. The dash lines are terminal edges [24], is the label of the super-
pixel. Label 1 corresponds to the prostate, while Label 0 represents the back-
ground.

number of vertices and edges of the graph is significantly re-
duced compared to pixel-based graph cuts methods. Second, a
3D superpixel-based neighborhood system is built in the MR
images. In this work, the Gaussian mixture model (GMM) [34]
is used to build gray features for the data term. Due to the insuf-
ficient ability of handling images in which the background has
similar intensity values to those of the prostate, a shape feature is
also introduced for the data term in order to tackle this problem.
Third, three key slices are selected and marked as an initial-
ization to construct the shape feature for the data term. Fourth,
two superpixel-based smoothness terms are proposed for the en-
ergy function, which are the inter-slice smoothness term and the
intra-slice smoothness term. Finally, once the gray and shape
features are obtained, an energy function is formulated, which
can be optimized by graph cuts to obtain the prostate surface.
Our energy function is formulated as follows:

(1)

where represents the 3D neighborhood system, is a set
of superpixels, stands for two neighboring superpixels
in the 3D neighborhood system. Data term shows the like-
lihood of a superpixel assigned to the prostate or background.
The smoothness term measures the difference between two
superpixels in the 3D neighborhood and encourages two sim-
ilar neighboring superpixels to be assigned with the same label.
The 3D neighborhood system is constructed based on su-

perpixels. Fig. 3 shows the 3D superpixel-based neighborhood
system built on three successive slices.
The data term is constructed by combining gray and shape

features in a weighted sum manner:

(2)

where and are two unary-data penalty
functions derived from gray and shape features. controls the
weight between the gray and shape features.
To model the gray data term of each superpixel s that be-

longs to either the prostate or background, a gray-level GMM
is learned from the collected intensity values in the three key
slices. A foreground prostate gray model and a
background gray model are obtained based on the
GMM, represents the mean intensity of a superpixel. Once
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Fig. 4. The framework of the 3D graph cuts algorithm.

Fig. 5. The superpixel-based shape data terms. Left: the original slice.Middle:
the superpixel-based shape data term of the prostate.Right: the superpixel-based
shape data term of the background. The penalties of the shape features will be
used when the superpixels are assigned as the prostate or background. Blue color
represents a low penalty, while red represents a high penalty.

the is obtained, the superpixel-based gray data term can be
computed as follows:

(3)
(4)

With only the gray feature, it is difficult to obtain satisfac-
tory segmentation of the prostate. Some background tissue with
similar gray values can be labeled as the prostate. Therefore,
a superpixel-based shape feature is introduced to resolve this
problem.
To obtain the shape feature, a core shape is first introduced in

our method. The basic idea is that the superpixels sit around or
in the core shape have a high probability to be labelled as the
prostate, and vice versa.
Three key slices are selected, which are at the base, apex and

middle of the prostate. Four points are manually picked up for
each of the three slices, as shown in Fig. 6. The core shapes of
these three slices are obtained by fitting a Bezier curve based on
the four points in each key slice (Blue points in Fig. 6).
To obtain the core shapes of the other slices, red dots of the

other slices should be obtained first. The red dots are obtained
based on linear interpolation of corresponding blue dots. Two
ranges of linear interpolations are used to get the red dots. One
is between the middle and apex key slices, the other is between
the middle and base key slices. Once the red dots are obtained,
the core shapes of these slices are generated by fitting a Bezier
curve based on the interpolated red dots. All of these core shapes

form a core shape surface, which will be used to generate the
shape feature.
The prostate and background shape data terms are defined as

follows.

(5)
(6)

where represents the mean value of the shape feature of
a superpixel. Given of one superpixel , the probability
of labeling this superpixel as the prostate is ,
which is defined as:

(7)

where is the distance of a pixel to the core shape surface. The
method of Felzenszwalb [35] is used to calculate . controls
the fatness of the shape, while decides the gradient of from
the outside of the shape to the inside of the shape. Fig. 5 shows
the superpixel-based shape data terms.
The smoothness term is computed by combining two terms,

which are the superpixel-based intra-slice smoothness term and
the superpixel-based inter-slice smoothness term. The formula-
tion of smoothness term is defined as follows.

(8)

The intra-slice smoothness term evaluates the
similarity of two neighboring superpixels connected by intra-
edges in the 3D neighborhood system, which is defined as:

(9)

is the Kronecker delta function that encourages penalty to be
considered only for edges across the segmentation boundary.

, if two labels are different. represents the
gray expectations of all pixels in a superpixel . is the
norm, is a constant parameter that weights the gray gradient,
and is set as , where denotes
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Fig. 6. On the left graph, the blue solid curves are prostate contours in the three key slices selected at the base, mid-gland and apex of the prostate. The blue dots
are manually labelled markers. The red dotted lines are the true boundary of the prostate. The red dots on the red dotted lines are obtained using the interpolation
of the corresponding blue dots in the 3D space. On the right graph, the red solid curve is the core shape, which is fitted based on the interpolated red dots.

expectation over all pairs of neighboring superpixels in the 3D
MR images.
The inter-slice smoothness term evaluates the

difference of two neighboring superpixels connected by inter-
edges in the 3D neighborhood system, which is defined as:

(10)

where stands for the area of intersection of two su-
perpixels connected by inter-edge, and represents the
area of union. This term encourages the superpixels in different
slices with similar shapes and locations to be assigned as the
same labels.
Once data and smoothness terms are obtained, the prostate

will be segmented by finding a 3D graph cut that minimizes
the energy function. However, following this efficient way does
not mean that the segmentations are perfect. This is because
the graph cuts may make segmentation leaks at weak edges. To
overcome these shortcomings of graph cuts, an active contour
model is introduced in the proposed method.

D. Active Contour Model

Chan and Vese [20] proposed an algorithm called active con-
tours without edges, which has been studies mainly in the con-
text of 2D images. In this work, we present a 3D Chan-Vese
active contour model to extract the prostate surface.
The model will find a surface that divides an MR image

volume into two regions, which are the prostate and the back-
ground. The 3D active contour not only makes segmentation
more smoothness, but also alleviates the deficiency of inaccu-
rate boundaries obtained from graph cuts, especially, when the
initial superpixels fail to accurately find the boundary of the
prostate.
It can be difficult to segment the boundary of the prostate at

the base and apex regions. Therefore, a user intervention may be
helpful to determine the true boundary of the prostate at those
two regions. The input points of the user on the apex and base
slices are useful for accurate segmentation of the prostate. In the
3D ACM, the surface at the apex and base are constrained in an
area surrounding the points of the user interventions. Therefore,
for the apex and base slices, we only focus on the detection of
the prostate boundary in a local region around the core shapes

that are interpolated from the initialization points labeled by the
user.

E. Hybrid Approach of Graph Cuts and Active Contour Model

In our work, the initial 3D segmentation is generated by ap-
plying the 3D superpixel-based graph cuts algorithm. The user
picks up three key slices and marks key points for each of the
three slices. A core shape surface is obtained based on these
marked key points. The gray data term and shape data term
are built based on these three selected key slices and the core
shape surface. The smoothness terms are built based on 3D su-
perpixel-based neighborhood system. Once data and smooth-
ness terms are obtained, the superpixel-based energy function
can be minimized by graph cuts to extract the prostate surface

, which is used as the initial segmentation for the active con-
tour model.
Since the initial prostate surface is obtained by graph cuts,

it sometimes misses the fine details and leaks at the regions with
weak boundaries, which could be critical for MR prostate im-
ages. Therefore, the 3D active contour model is introduced to
solve this problem. The output of the graph cuts is used as
the input of the 3D active contour model. is close to the true
surface of the prostate, so the output prostate surface of the
3D active contour model will not be far from the ground truth.
As is obtained only based on the three key slices, it is

not good enough to extract the prostate surface. Therefore, the
surface is used to update the gray and shape data terms
of the graph cuts algorithm. The 3D graph cuts and 3D active
contour are iteratively performed until the surface solution has
converged or the maximum number of the iterations has been
reached.

F. Evaluation Metrics

Our segmentation method was evaluated using four quanti-
tative metrics, which are Dice similarity coefficient (DSC), rel-
ative volume difference (RVD), Hausdorff distance (HD), and
average surface distance (ASD) [4], [36]. The RVD is used to
evaluate whether the algorithm tends to over-segment or under-
segment the prostate. RVD is negative, if the algorithm over-
segments the prostate and vice versa. To compare our method
with the methods proposed by Qiu [4], [9], the mean absolute
distance (MAD) is also used.
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III. EXPERIMENTAL RESULTS

A. Data

In this work, 43 prostate volumes of T2-weighted MR images
from Emory University Hospital were used in the experiments.
All subjects were scanned at 1.5 T and 3.0 T with three Siemens
Magnetom systems, which are Aera, Trio Tim, and Avanto. No
endorectal coil was used for our data acquisition. The repetition
time (TR) varies from 1000 ms to 7500 ms, while echo time
(TE) varies from 91 ms to 120 ms. The original slice spacing
varies from 1 mm to 6 mm. This data set allows us to test the
robustness of the algorithm. To better visualize and analyze the
data, an isotropic volume is obtained for each MR data using
windowed sinc interpolation. The voxel size is typically 0.625

, 0.875 , or 1 . The size of the transverse images
varies from 320 320 to 256 256. Each slice was manually
segmented by two experienced radiologists for assessing the
inter-observer and intra-observer variability. To avoid the situa-
tion that the radiologist remembers previous manual segmenta-
tion, any twomanual segmentations were performed at least one
week apart. Majority voting is adopted to fuse the labels from
different ground truths, which were manually segmented by the
two radiologists. The segmentation result from our algorithm is
compared with the six ground truths from the two radiologists.
The mean DSC varies from 88.33% to 90.84%, while the mean
ASD varies from 1.68 mm to 1.86 mm. The DSC is used to eval-
uate the inter- and intra-observer variability. For the intra-ob-
server variability, the DSC of each two ground truths varies from
87.38% to 93.16%. For the inter-observer variability, the DSC
between two radiologists is 90.52%.
We also validated our algorithm on a publicly available data

set called the PROMISE12 Challenge [37], which contains 30
prostate T2 MR images. The ground truths of these 30 images
are not available. The user must submit their segmentation re-
sults to the PROMISE12 website in order to obtain the quanti-
tative evaluation results and ranking. This data set was obtained
from multi-center and multi-vendor studies, which have dif-
ferent acquisition protocols (i.e., different slice thickness, with/
without endorectal coil).

B. Implementation Details

Themain algorithmwas implemented inMATLAB codes and
the graph cut was implemented in C++ codes. The algorithm
runs on a Windows 7 desktop with an Intel Xeon E5-2687W
CPU (3.4 GHz) and 128 GB memory. Our code is not opti-
mized and does not use multi-thread, GPU acceleration or par-
allel programming.

C. Qualitative Results

The qualitative results from six prostate volumes are shown
in Fig. 7. Blue curves are the manually segmented ground truth
by the radiologist, while the red curves are the segmentation of
the proposed method.
Fig. 8 shows the 3D overlay visualization of the manual seg-

mentation and our segmentation of the prostate volume, indi-
cating that the segmentation obtained by the proposedwell over-
laps with the ground truth.

Fig. 7. Qualitative evaluation of the prostate segmentation on sixMR volumes.
We choose the volumes every seventh case. The blue curves are the manually
labeled ground truth, while the red curves are the segmentations of the proposed
method for the apex (left), mid-gland (middle), and base (right) of the prostate.
The values of DSC(%), RVD(%), HD(mm), and ASD(mm) of each case are
overlaid on the images.

Fig. 8. 3D visualization of the segmented prostate (white regions) compared
to the manual ground truth (gold regions) in two different views.

D. Quantitative Results on Our Data Set
Table I shows the quantitative evaluation results from 43 MR

image volumes. For this experiment, each prostate volume was
divided into three sub-regions, i.e., the base, apex, and middle
regions, which contain 30%, 30%, and 40% slices, respectively.
The values of four metrics of each sub-region are also posted in
the table. Our approach yielded a DSC of %, while the
minimal DSC is 86.0% and the maximum DSC is 92.3%. The
DSC indicates that our method segments all the 43 prostates
with a relatively high accuracy and low standard deviation. The
average surface distance is mm, indicating that the pro-
posed method can segment the prostate gland with a relatively
low error. For the 43 volumes, the HD,whichmeasures themax-
imum distance between two surfaces, is mm. The av-
erage RVD of our method is 0.7%, which shows that the result
obtained by the proposed method has a good balance between
over-segmentation and under-segmentation. The low standard
deviation of the computed four metrics shows the robustness
and repeatability of the proposed algorithm. The quantitative
evaluation agrees with the conclusions from the visual observa-
tion of the experimental results.

E. Quantitative Results on PROMISE12 Data Set
Our proposed method was ranked at the second place in the

PROMISE12 Challenge1. Compared to the method at the first

1http://promise12.grand-challenge.org/Results/Overview
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TABLE I
QUANTITATIVE RESULTS OF THE SEGMENTATION. THE TABLE SHOWS THE RESULTS OF THE WHOLE GLAND AND THE THREE SUB-REGIONS, WHICH

ARE THE BASE, APEX, AND MID-GLAND REGIONS. DSC: DICE SIMILARITY COEFFICIENT (%), RVD: RELATIVE VOLUME DIFFERENCE (%),
HD: HAUSDORFF DISTANCE (MM), AND ASD: AVERAGE SURFACE DISTANCE (MM)

place, our method has much smaller standard deviation and is
actually the smallest among all methods, indicating the robust-
ness of our method.
The proposed approach yielded a DSC of %,

an average boundary distance of mm, a 95% HD
of mm, and a volume difference of %,
for the whole prostate gland. The DSCs of %
and % were found at the base and apex regions,
respectively.

F. Comparison with Other Methods

Eleven state-of-the-art prostate segmentation methods [3],
[4], [8]–[10], [13]–[16], [18], [38] were chosen as the bench-
mark to evaluate our method. The comparisons of these 11
methods with our method are provided in Table II. DSC and
MAD are chosen as metrics to evaluate the performance of

these methods. The results of these five methods [3], [4], [10],
[16], [38] were from Qiu's paper [4]. It should be noted that
since all of the results evaluated on different data sets, a direct
comparison is difficult. The results were reported as mean
standard deviation. The hyphen means that the corresponding
measures are not reported in the respective papers.
Our method achieved a mean DSC of %, which

is the highest DSC with the lowest standard deviation. Toth's
method has a little higher MAD than ours. But our method has
the lowest standard deviation of the MAD. With a GPU opti-
mization, Qiu's method [4] has a higher efficiency of within 5
seconds compared to 35 seconds of our method that does not
use GPU acceleration.
Among these methods, two methods [4], [9] have the top

performance, and also posted their quantitative results on the
three sub-regions in their papers. Therefore, we chose these two
methods for the further comparison.
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TABLE II
COMPARISON WITH 11 OTHER PROSTATE MR SEGMENTATION METHODS

TABLE III
EVALUATION OF THE THREE SUB-REGIONS: BASE, APEX, AND MID-GLAND OF
THE PROSTATE. THE DSCS WITH STANDARD DEVIATION OF QIUS METHOD

ARE USED FOR THE COMPARISON

For the first method [4], Table III shows the comparison
results in term of DSC on the three sub-regions. Qiu's method
yields a higher DSC than ours at the middle regions. But our
method has a higher DSC than Qiu's method for the base and
apex regions as well as the whole prostate. Moreover, our
method has a lower standard deviation for the whole prostate,
middle, and apex regions, which yields a consistent DSC. The
testing for statistical significance was performed at the whole
prostate and the three sub-regions between the two methods in
terms of DSC, HD, and MAD. The Bonferroni correction is
used to counteract the problem of multiple comparisons. The
analysis shows that there is a statistically significant difference
at the apex region in terms of DSC and HD, and at the middle
region in terms of HD and MAD.
For the second method [9], the testing for statistical signifi-

cance was also performed on the whole prostate and three sub-
regions in terms of DSC, HD, and MAD. The analysis shows
that there is no statistically significant difference on all of DSCs.
However, there is a statistically significant difference in terms
of HD and MAD on the whole prostate and three sub-regions,
except at the base region in terms of HD.

G. Parameter Sensitivity

In our experiments, the parameters were set empirically at
first. Then we optimized one parameter at a time while other
parameters were fixed. The DSC was used to evaluate the per-
formance of the segmentation for the choice of the parameters.
Once the parameters are determined, they were fixed in all of
the experiments.
To evaluate the influence of the number of the points on one

key slice, the DSC was obtained from the segmentation exper-
iments with different parameter settings for all the 43 volumes
data, as shown in Fig. 9. The DSC varies only in a small range,
indicating that the proposed segmentation is robust and insensi-
tive to the number of markers.

Fig. 9. The effect of the number of the points on the segmentation perfor-
mance. When the number of the points varies from 4 to 20, the DSC has very
small changes. The proposed method is insensitive to the number of mark points
picked by the user.

Extensive segmentation experiments were performed to as-
sess whether our algorithm is sensitive to the selection of the
apex, base, and middle slices. In our method, the user selects
three key slices. To evaluate the effect of the selection of the
middle slice, four slices around the middle slice are se-
lected as the current middle slice to run the algorithm individu-
ally. These four slices are , and

. Fig. 10(a) shows the evaluation result of the selec-
tion of the middle slice. Besides the evaluation of middle slice,
the selections of the apex slice and base slice are also evaluated,
which are shown in Figs. 10(b) and (c). The result shows that the
proposed method is not sensitive to the selections of the apex,
based, and middle slices.
Superpixels with a smaller size are more homogeneous but

increase the computational cost. Larger superpixels reduce the
computational cost more than smaller superpixels, but it may
straddle the boundary between two objects. To test the effect
of superpixel size on segmentation performance, our method is
tested on pre-segmented superpixels with different sizes. The
parameter of the SLIC is tuned to obtain several sizes varying
from 50 to 200 pixels. Fig. 11 shows the dependency of segmen-
tation performance on the superpixel size. Forty three volumes
are used in this experiment, while five superpixel sizes are used
for each MR volume. The proposed method provides similar
DSC ratios when the size is in the range from 50 to 100. In the
all of our experiments, 70 is selected as the superpixel size for
all the experiments, which gives a good compromise between
the efficiency and performance. When the size increases to 150
or 200, the DSC ratios decrease slightly, as shown in Fig. 11.
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Fig. 10. The effect of selecting three key slices on the segmentation performance. Five successive slices around each key slice are chosen to be the key slices
individually. The mean DSC and standard deviation are from the 43 MR volumes. (a) Selection of the middle slice. (b) Selection of the apex slice. (c) Selection of
the base slice.

Fig. 11. The effect of superpixel size on the segmentation performance. Five
sizes of superpixel are chosen to test the ability of the segmentation method,
which are 50, 70, 100, 150 and 200 pixels.

Experiments were carried out to compare the performance
of the 3D graph cuts algorithm, 3D active contour model, and
the proposed hybrid method. For the 3D superpixel-based graph
cuts algorithm, the gray and shape data terms are built based on
the three key slices. There is no iteration for minimizing the
energy function, which means the graph cuts is only performed
once. For the 3D active contour model, the core shapes are used
as the initialization input.
Fig. 12 shows the average DSC of the three methods for 43

MRI volumes. The DSC of the 3D ACM is 70.4%, which is
not ideal. This is because the initialization is not good for 3D
ACM. For the 3D graph cuts algorithm, the DSC is better than
that of ACM, which is 84.6%. With the combination of graph
cuts and active contour model, the quality of the segmentation is
improved, which is increased to 89.3%. This figure also shows
that the output segmentation of the graph cuts is competent to
be a good initialization for the active contour model.

IV. CONCLUSION

A. Conclusion
A hybrid 3D method that combines a 3D graph cuts and a 3D

active contour model in a loop manner is proposed to segment
prostate MR images. By utilizing a surface style instead of the
curve-by-curve style, the proposed segmentation method is able
to utilize the full 3D special information to extract the surface of
the prostate. We have also approached the problem of prostate
segmentation from a novel point of view by using superpixel
instead of pixel. Our method profits from superpixel at two as-
pects: 1) it makes the shape and gray features robust, which

Fig. 12. Comparison of three segmentation methods: graph cuts only, active
contour model only, and the hybrid approach of the two methods.

reduces the risk of labeling the superpixels with wrong labels.
Many new features can be developed based on the superpixels,
which is one of our future works. 2) The proposed method re-
duces the computational and memory costs, which makes the
3D volume segmentation is tractable. We believe that the super-
pixel-based method can be applied for medical images of most
body regions and other different image modalities. The experi-
mental results show that the proposed method outperforms the
state-of-the-art methods in terms of accuracy and robustness.

B. Limitation
The proposed method is based on an initial over-segmenta-

tion called superpixel. Therefore, if the initial over-segmenta-
tion does not provide a good adherence to the prostate boundary,
the proposed method may have a decreased performance. Fortu-
nately, other works [31], [39] have been developed or are under
development to improve the accuracy of how to generate super-
pixels, which will also improve the performance of our segmen-
tation algorithm.
In addition, this work is a semi-automatic method, which re-

quires the user interventions for initialization. It is important
to develop a fully automatic segmentation method, which can
be implemented by obtaining the initialization in an automatic
manner. Atlas-based methods and machine learning methods
are potential solutions for automatically obtaining the approx-
imate location of the prostate. Our future work will focus on
developing robust, accurate, and fully automatic methods.
The method may need to improve the performance for image

volumes that contain sudden changes between adjacent slices of
the prostate, for example, when two successive slices have very
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Fig. 13. Prostate segmentation of two adjacent slices at the bladder neck
(Blue: the ground truth from manual segmentation. Red: the segmentation by
the algorithm).

different shapes and sizes of the prostate. This is not caused by
initial superpixel segmentation but by the initial core shape of
the initialization. The core shape is obtained by interpolation,
which assumes that two adjacent slices have a similar shape and
size for the prostate. As shown in Fig. 13, if there is a sudden
change in the shape and the size of the prostate at the bladder
neck (blue contours), the sudden variation may lead to seg-
mentation errors at that region. This problem can be solved by
adding more landmarks on the slices that have sudden changes
of the prostate.

C. Discussion

In the experiment as shown in Fig. 9, we have evaluated
the effect of the user initialization. The proposed method with
more mark points performs slightly better than that of few mark
points. Nonetheless, it still extracts the good enough surface of
the prostate with even only four mark points on the key slice.
In general, the proposed algorithm could reliably extract the
prostate surfaces fromMR volumes if the mark points cover the
key feature location of the prostate.
The proposed segmentation method is implemented without

optimization. To make it more practical in the clinical applica-
tion, the multithread implementation of the method is one solu-
tion. Liu et al. [40] have proposed a novel adaptive bottom-up
approach to parallelize the graph cuts algorithm. We will in-
vestigate the parallelization of our proposed method in the fu-
ture. In addition, 3D superpixel based method has lower compu-
tational complexity for segmenting prostate, which is also our
future work. We believe that our semi-automatic segmentation
method can have many applications in prostate imaging.
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